Appendix A: Hydrogeological Study (Leggette, Brashears & Graham, Inc.)

HYDROGEOLOGIC STUDY FOR SUBSURFACE SEWAGE DISPOSAL SYSTEM LUTHERAN HOME OF SOUTHBURY SOUTHBURY, CONNECTICUT

Prepared For:

Lutheran Home of Southbury

April 2016

Prepared By:

LEGGETTE, BRASHEARS & GRAHAM, INC. Professional Groundwater and Environmental Engineering Services 4 Research Drive, Suite 204 Shelton CT 06484

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
2.0	BACK	KGROUND	1
3.0	PHYS	ICAL SETTING	2
4.0	PREV	IOUS SUBSURFACE INVESTIGATIONS	3
	4.1	Environmental Site Investigations	3
	4.2	Beta Subsurface Investigation	4
5.0	HYDI	ROGEOLOGIC INVESTIGATION	4
	5.1	Drilling and Monitoring Well Installation	5
	5.2	Piezometer Installation	
	5.3	Permeability Testing	
		5.3.1 In-Situ Permeability Tests in Monitoring Wells	5
		5.3.2 Permeability Test by Sieve Analysis	
	5.4	Water-Level Monitoring in Wells and Piezometers	
	5.5	Survey of Monitoring Points	
	5.6	Water-Quality Sampling	
6.0	INVE	STIGATION RESULTS	7
0.0	6.1	Composition of Unconsolidated Sediments	
	6.2	Permeability of Unconsolidated Sediments	
	0.2	6.2.1 In-Situ Permeability Results	
		6.2.2 Sieve Analysis Permeability Results	
	6.3	Water-Level Monitoring Results	
	0.5	6.3.1 Piezometers	
	6.4	Water-Quality Results	
7.0	MOUT	NDING ANALYSIS	11
7.0	7.1	Model Layers	
	7.2	Grid Design	
	7.2	Boundary Conditions	
	7.4	Model Input	
		8	
		7.4.2 Horizontal and Vertical Hydraulic Conductivity	
	7 6	7.4.3 Proposed and Existing SSDS Area	
	7.5	Model Calibration	
		7.5.1 PEST-ASP Calibration Set-up	
		7.5.2 Calibration Results	
		7.5.3 Calibrated Values	.18

TABLE OF CONTENTS (continued)

Page

	7.6	7.6.1	ation Setup Mounding Criteria Model Simulations	19
8.0	TRAV	EL TIN	/IE ANALYSIS	21
9.0	CONC	CLUSIO)N	22
REFE	RENCE	ES		23

LIST OF TABLES (at end of report)

<u>Table</u>

- 1 SSDS Discharge CTDEEP Permitted Discharge
- 2 Estimated Hydraulic Conductivity Values
- 3 Groundwater Measurements
- 4 Piezometer Water Level Measurements
- 5 Summary of Laboratory Water-Quality Data
- 6 Observed versus Simulated Groundwater Elevations
- 7 Simulated SSDS Discharge
- 8 SSDS Bottom Elevations and Post-Mounding Groundwater Elevations

LIST OF FIGURES (at end of report)

Figure

- 1 Study Area
- 2 Monitoring Locations
- 3 Generalized Cross Section A A'
- 4 March 17, 2016 Seasonal High Groundwater Elevation Contour Map
- 5 Simulated Versus Measured Groundwater Elevation Contour Map (July 16, 2015)
- 6 Simulated Post Mound Groundwater Elevation, Design Flow
- 7 Simulated Post Mound Depth to Water, Design Flow
- 8 Simulated Post Mound Groundwater Elevation and Simulated Groundwater Flow Paths

LIST OF APPENDICES (at end of report)

<u>Appendix</u>

Ι	Geologic Logs
II	Historical Hydraulic Conductivity Data
III	Hydrographs and Regional Water-Level Data
IV	Water-Quality Data
V	Recharge Estimations
VI	Stormwater Recharge Estimate
VII	Model Calibration Results
VIII	Final Model Parameters

PLATE (in pocket at end of report)

<u>Plate</u>

I Model Grid and Boundary Conditions

HYDROGEOLOGIC STUDY FOR SUBSURFACE SEWAGE DISPOSAL SYSTEM LUTHERAN HOME OF SOUTHBURY SOUTHBURY, CONNECTICUT

1.0 INTRODUCTION

Leggette, Brashears & Graham, Inc. (LBG), on behalf of Lutheran Home of Southbury, Inc. (Lutheran) has completed a hydrogeologic study of a planned modification of the existing subsurface sewage disposal system (SSDS) at the convalescent nursing home and rest home for the aged located in Southbury, Connecticut.

The study was undertaken to obtain site-specific hydrogeologic data. As part of this evaluation, LBG reviewed all available published geologic and hydrogeologic data along with data from hydrogeologic investigations conducted by Beta Group, Inc. (Beta) in 2015 and Dudley Ashwood (Ashwood) in 1994 and 1995. This study was completed between July 2015 and March 2016, and included the drilling of thirteen test borings/monitor wells, the installation of four piezometers, the completion of in-situ permeability tests to estimate aquifer permeability, measurement of water levels in groundwater-monitoring wells and existing test pit stand pipes, the collection of water quality data and development of a groundwater flow model to estimate mounding and travel times at specified discharge rates.

2.0 BACKGROUND

Lutheran Home of Southbury (Lutheran) is a convalescent nursing home and rest home for the aged, located at 990 Main Street South in Southbury, Connecticut (figure 1). The property consists of 13.3 acres of land and is occupied by one main building and a storage building. The main building was expanded in 1982 to accommodate more residence. The main building is served by two SSDS. The original system (SSDS-A) is located in the northwest corner of the property and services a portion of the original building. A second system (SSDS-B) is located east of the existing building and was constructed as part of the building expansion in 1982.

In 1993 system SSDS-B failed. As a result, modifications were made to the sanitary plan and design. The proposed modifications of system SSDS-B were approved and permitted by the Connecticut Department of Energy and Environmental Protection (CTDEEP) in 1995. The existing SSDSs were permitted to discharge a combined maximum average daily flow of 13,110 gallons per day (gpd). Lutheran is currently evaluating a proposed modification of the SSDS-B to address a CTDEEP Consent Order issued as a result of a second SSDS-B failure in 2009.

The design flows for each of the existing SSDSs after the planned modification of SSDS-B are shown on table 1. The table shows that the combined SSDS design flow following the planned modification of SSDS-B is less than the 1995 permitted flow at 13,110 gpd. If a 50-percent hydraulic reserve is accounted for in the analysis, the design flow is estimated at 19,665 gpd. The design flow and 50-percent reserve flow of the modified SSDS-B evaluated for this analysis were provide by Beta. The locations of the SSDS-A and SSDS-B are shown on figure 2.

As the effluent is discharged into the soil through leaching systems, groundwater mounds are formed. The goal of this analysis was to provide a conservative estimate of potential groundwater mounding after the modifications are made to SSDS-B. Predictions from this analysis were used to determine: 1) if the soils could accept the design flow rate without excessive mounding up into the leaching systems; 2) the potential for premature breakout on side slopes using conservative assumptions; 3) the potential for mounding up into nearby storm-water infiltration systems and 4) the estimated 21-day travel distance for groundwater as it flows from the mounds, in order to make certain that any pathogenic bacteria in the effluent has sufficient time in the soil to die off.

This report addresses only issues related to mounding and travel time, and does not evaluate treatment levels. Beta is responsible for all issues related to the design of the systems.

3.0 PHYSICAL SETTING

The study area is shown in figure 1. The bedrock beneath the study area is mapped as the Portland Arkose is a reddish-brown, medium to coarse-grained, sedimentary rock composed of quarts, feldspar and rock fragments (Rogers, 1985). The surficial materials are mapped as sand and gravel beneath the northwestern half of the Site with the southeastern half of the property mapped as glacial till (Stone, 1992).

The soils beneath the majority (54 percent) of the Lutheran property are classified as Canton and Charlton Soils. Canton and Charlton soils are described as well-drained gravelly loam with depth to water more than 6.5 feet below grade (ft bg). The soils beneath the central portion of the Lutheran property are classified as Sutton Soils. Sutton Soils are described as moderately well-drained fine sandy loam over gravelly sandy loam with depth to water greater than 6.5 ft bg. The soils beneath the easternmost portion of the property are classified as Ridgebury, Leicester and Whitman Soils, theses soils are poorly drained with a depth to water of less than 1.5 ft bg (NRCS web page, http://websoilsurvey.nrcs.usda.gov).

The nearest surface-water bodies to the existing SSDS areas are the wetland complex located in the central portion of the property approximately 60 feet east of SSDS-B, Stiles Creek located in the eastern portion of the property approximately 650 feet east of SSDS-B and a pond located near the intersection of Hidden Brook Drive and Dublin Hill Road approximately 900 feet from SSDS-B.

4.0 PREVIOUS SUBSURFACE INVESTIGATIONS

LBG reviewed the data from previous subsurface investigations completed by Beta (2015) and Ashwood (1994 and 1995) to obtain information on the hydrogeology beneath the Site. The information obtained from these investigations is summarized in the following sections of this report.

4.1 Beta Investigation

In 2015, Beta completed a preliminary subsurface investigation on the property. The assessment included digging 12 test pits designated as TP-1 through TP-12 (figure 2). The test pits were completed to depths ranging from 5.9 to 13 ft bg. The test pit geologic logs are included in Appendix I.

The data obtained from this investigation indicate that the unconsolidated material approximately 100 to 200 feet east of the central wetland buffer area is comprised primarily of very fine to medium sand with some coarse sand intermixed with silt and clay. Laboratory falling head permeability tests were conducted on soil samples collected from 5 of the test pits. Data from these tests were used to estimate hydraulic conductivity (ranging from 0.26 to 1.54 ft/day) of the unconsolidated material in the study (Appendix II).

Ground water was observed in 4 of the test pits at depths ranging from approximately 5.6 to 11.5 ft bg. Soil mottling, which is an indication of seasonal high groundwater levels, was

observed in B1 at 4 ft bg and in B3 at 4.62 ft bg. Perforated stand pipes were placed in each of the test pits.

4.2 Dudley Ashwood Investigations

A subsurface investigation was completed by Dudley Ashwood (1995 and 1996) to obtain the site-specific hydrogeologic data necessary to repair SSDS-B in 1995. The assessment included the digging of 15 test pits (DP-101 through DP-104, DP-200 through DP-203 and DP-110 through DP-115) and permeability tests under laboratory conditions of the soil samples collected from 2 of the 15 test pits. The test pit geologic logs are included in Appendix I. Each test pit was completed to a depth of 9.5 to 14 ft bg. The data obtained from this investigation indicate that the unconsolidated material in the study area is comprised primarily of fine to medium sand with some coarse sand, fine gravel and silt. Data from these permeability tests were used to estimate hydraulic conductivity values for the study area (ranging from 0.7 to 2.1 ft/day) (Appendix II).

Groundwater was observed in 4 of the test holes at depths ranging from approximately 7.5 to 13.5 ft bg. No mottling was observed in any of the test pits. Perforated stand pipes were placed in 7 of the 15 test holes and depth-to-water data was collected inside the 7 new and 2 existing test pit stand pipes from April 2, 1994 through August 1, 1994 in order to verify the seasonal high water-table in the study area (Appendix III)

5.0 HYDROGEOLOGIC INVESTIGATION

Between June 2015 and March 2016 LBG completed a hydrogeologic investigation to define the aquifer characteristics, groundwater configuration and water quality beneath the Site. The investigations included drilling 13 test borings, installing 13 groundwater-monitoring wells (MW-1 through MW-13), and installing 4 piezometers (PZ-A through PZ-D). Data from sieve analyses conducted on selected sediment samples collected from test borings were used to estimate hydraulic conductivity. LBG also completed in-situ permeability tests in monitoring wells MW-1 through MW-8 to estimate hydraulic conductivity of the onsite unconsolidated deposits, collected water-level measurements in existing standpipes, monitoring wells and piezometers to determine the groundwater configuration and collected groundwater samples from the 13 new monitoring wells.

5.1 Drilling and Monitoring Well Installation

Between June 23 and 29, 2015 and February 2 and 3, 2016, LBG supervised the advancement of 13 soil borings throughout the study area using the hollow-stem auger drilling method (figure 2). Soil descriptions were logged by LBG personnel with soil samples collected with a split-spoon sampler over 2-foot intervals based on change in lithology or to identify the depth of saturation between grade and 42 ft bg. Select soil samples collected from zones above, at and below the water table were retained for sieve analysis.

The borings were advanced to depths ranging from 12 to 42 ft bg. Groundwatermonitoring wells were installed in the 13 borings at depths of 11 to 41 ft bg. The monitoring wells were constructed with 5 feet of 10-slot, schedule 40 PVC well screen, with the top of the screen set below the water table. Copies of the geologic logs, including well construction details, are included in Appendix I.

5.2 Piezometer Installation

Four piezometers (PZ-A through PZ-D) were installed in the study area (figure 2). PZ-A and PZ-B were installed in the wetland complex located in the central portion of the property southeast of SSDS-B and PZ-C and PZ-D were installed in Stiles Creek located in the eastern portion of the property.

The piezometers were constructed with a 1-foot long, stainless-steel, wire-wrapped screen affixed to one or two 5-foot lengths of galvanized steel pipe. The piezometers were installed using a slide hammer until the top of the screen was a minimum of 1-foot below the bottom of the streambed or wetland ground surface.

5.3 **Permeability Testing**

5.3.1 In-Situ Permeability Tests in Monitoring Wells

LBG conducted slug tests in 8 of the newly installed monitoring wells (MW-1 through MW-8) to provide permeability (hydraulic conductivity) data for the saturated sediments beneath site. The slug test for each well followed the same procedure, as summarized below.

Following the measurement of the static depth-to-water (DTW), an automated pressure transducer with a built-in datalogger (MiniTroll[®]) was installed in the well to allow for automated water-level measurements throughout the testing period. The MiniTroll[®] was

programmed to make and record measurements at one-second intervals to ensure an adequate number of data points would be recorded.

The slug tests were conducted pneumatically by fitting a valve assembly with a regulator, pressure gauge and compressed air feed to the well head. The well-head assembly was used to seal the well from the ambient air, and then compressed air was introduced into the monitoring well, forcing the downward displacement of the water column. The valve was then opened, releasing the pressure in the well and initiating an instantaneous rise in the water column, followed by a slower return to the static level. Water-level measurements were recorded every second by the MiniTroll[®]. This testing method is commonly referred to as a "rising head" test. The resulting water-level data was used to calculate the permeability of the saturated sediments.

5.3.2 Permeability Test by Sieve Analysis

Sieve analyses were conducted on select soil samples collected from soil borings MW-1 though MW-8. The soil samples were initially dried by heating, weighed, and placed atop a series of wire screens of decreasing mesh size. The samples were mechanically shaken at a constant frequency for a period of five minutes. The amount of sample retained by each screen in the series was then weighed to obtain the grain-size distribution for the sample. The grain-size distribution data was input into the computer program SizePerm® to calculate theoretical hydraulic conductivity.

5.4 Water-Level Monitoring in Wells and Piezometers

On July 3, 2015, HOBO® water-level recording devices were installed in monitoring wells MW-2 and MW-5 and set to record water levels at 30-minute intervals. The MiniTrolls were removed on September 11, 2015. The nearly continuous DTW data obtained over this 10 week period was used to assess the water-level fluctuation near SSDS-B. The water-level data is presented in Appendix III.

To supplement the automated data, manual DTW measurements were made in the 12 test pit stand pipes, 1 existing environmental monitoring well, 13 newly installed monitor wells and 4 newly installed piezometers on July 1, 2015, July 16, 2015, July 28, 2015, August 11, 2015, September 24, 2015, October 15, 2015, January 18, 2016 and March 17, 2016 with a clean steel tape and chalk. Hydrographs of the data are included in Appendix III.

5.5 Survey of Monitoring Points

The location, top-of casing (TOC) and grade elevations at each monitoring well included in the data collection of groundwater measurements were surveyed by Stuart Somers CO., LLC. The vertical and horizontal locations were referenced to the Connecticut State Plan North American Datum 1983 and North American Vertical Datum of 1988 (NAVD88), respectively.

5.6 Water-Quality Sampling

LBG completed three groundwater quality sampling events at the Site. A sampling event occurred between September 23 and October 1, 2015, a second sampling event on February 9 and 10, 2016 and a third event on March 17, 2016. The work was completed to develop information about the groundwater quality that would be used by Beta to develop an appropriate septic system design and included collecting groundwater samples that were submitted to the laboratory for analysis.

Whenever possible, based on the amount of available water, groundwater samples were collected in accordance with the EPA low-flow sampling technique guidelines or via grab sampling. Groundwater quality samples were collected from select sampling locations for total nitrogen, nitrite, nitrate, ammonia, total phosphorous orthophosphate, total kjeldahl nitrogen (TKN), total dissolved phosphorous and fecal coliform. Field parameters were monitored with a calibrated YSI meter and flow-thru cell for pH, conductivity, turbidity, dissolved oxygen (DO), temperature and oxidation reduction potential (ORP). The low-flow sampling logs and laboratory reports are attached in Appendix IV.

6.0 INVESTIGATION RESULTS

The data obtained from the above-described investigations were used to determine the groundwater configuration beneath the property and develop a groundwater-flow model that was used to simulate various load conditions for the SSDSs, evaluate the associated groundwater mound and estimate the 21-day travel distance for groundwater as it flows from the mound.

6.1 Composition of Unconsolidated Sediments

A generalized cross section, A-A' (figure 3), was constructed to transect the property. The location of the cross section is shown on figure 2. The cross section was utilized to identify

LEGGETTE, BRASHEARS & GRAHAM, INC.

any significant confining or stratigraphically different units, transecting the study area, which was then incorporated into the mounding analysis. Analysis of the well logs and the geologic cross sections revealed that the unconsolidated material beneath the upper 10 to 20 feet of the site is comprised mainly of fine to coarse sand with varying amounts of silt, gravel and cobbles. The unconsolidated material below these deposits consist primarily of very fine to fine sand and silt. The geologic boring logs including descriptions of the overburden material are included in Appendix I.

Groundwater was encountered at depths ranging from 1.2 to 25.2 ft bg. Based on data collected from the test borings, the depth to rock beneath the site ranges from 12 ft bg to greater than 42 ft bg.

6.2 Permeability of Unconsolidated Sediments

6.2.1 In-Situ Permeability Results

The computer program AQTESOLV[®] was used to interpret the slug test data and calculate hydraulic conductivity values for the saturated soils beneath the site. The program requires basic input parameters including the initial water-level displacement following the insertion/removal of the slug (H0), water-level measurements at various times throughout the test, radius of the well and borehole, length of the well screen, depth of the base of the well screen, and saturated thickness of the aquifer. Using these parameters, the program generates a graph of the water-level displacement versus time.

The KGS Model (Hyder, Butler, McElwee and Liu, 1994) for slug test analysis was used for the calculation of conductivity values for the slug test data, as it readily applies to both fully and partially penetrating wells in unconfined aquifers and is suitable for highly permeable sands and gravel. Using the computer program, a best-fit line is placed on the earliest straight line segment of the graph plot of water-level displacement versus time. The slope of the line is then used with the other input parameters to calculate an average hydraulic conductivity value.

The average hydraulic conductivity values calculated for the saturated soils using slug test data ranged from 0.3 to 6.8 ft/day (feet per day) with an average of 1.9 ft/day (table 2). The results of the individual slug test analyses are included in Appendix II.

6.2.2 Sieve Analysis Permeability Results

A summary of sieve analysis results and graphs of the grain-size distribution for each sample are included in Appendix II.

The computer program SizePerm[©] was used to calculate theoretical hydraulic conductivities in the unsaturated soil. Sieve analysis data for soil samples collected from the soil borings and test pits were entered into the program, which uses a number of methods to calculate hydraulic conductivity. The methods are generally specific to certain soil types and are applicable based on average grain-size diameter and the uniformity coefficient of the sample.

For the purposes of this study, the Sauerbrei method was used for calculation of hydraulic conductivity. The Sauerbrei method applies to fine- to coarse-grained sands and is preferred due to increased accuracy over older methods, particularly the Hazen method, which does not consider the entire particle-size distribution of the sample (Carrier III, 2003). Using the sieve data, SizePerm[©] calculates a theoretical horizontal hydraulic conductivity of the subsurface material in centimeters per second, which is then converted to feet per day.

The hydraulic conductivity values calculated for the unsaturated materials ranged from 3.9 to 16 ft/day with an average of 8.1 ft/day (table 2). The hydraulic conductivity values calculated for the saturated materials using sieve data ranged from 3 to 10 ft/day with an average of 6.6 ft/day (table 2). The results of the SizePerm© analyses are included in Appendix II.

6.3 Water-Level Monitoring Results

The water-level monitoring data reflect groundwater conditions inclusive of discharge from the existing SSDSS and discharge from the onsite storm water infiltration system. The groundwater beneath the site exists in the unconsolidated sediments under phreatic, water-table conditions at depths ranging from 1.4 feet above grade at PZ-C to 27.9 ft bg at LBGMW-8 (table 3). Hydrographs depicting changes in water levels measured during the monitoring period from July 1, 2015 through March 17, 2016 are included in Appendix III.

Data presented on the table and hydrographs show that the water-level at each monitoring location declined between 0.4 and 4.9 feet from the start of the monitoring period in July 2015 to October 2015 and recovered 2.8 to 5.4 feet from October 2015 to March 2016. The water-level data and hydrographs also show that the monitoring locations with the greatest fluctuations are located in the upland area on the eastern portion of the property.

The groundwater-level measurements made on March 17, 2016, elevations of nearby surface water from topographic maps and survey data were used to construct a groundwater elevation contour map (figure 4). This date was selected because the water levels in most of the monitoring wells were either at or near the highest levels recorded during the monitoring period (July 1 through March 17, 2016). Figure 4 shows a groundwater flow divide near LBGMW-5. The groundwater to the west of the divide flows in a westerly direction toward the Pomperaug River and groundwater to the east of the divide flows in a northeasterly direction toward Stiles Creek. Figure 4 also shows the groundwater mound resulting from discharge to the existing SSDS-B.

The water-level measurements at the United States Geological Survey (USGS) Station SB-42 in Southbury, CT were used to characterize the seasonal high groundwater level in the area. This is the closest USGS well to the property with a sufficiently long period of water-level measurements. Well SB-42 is installed in a glacial sand and gravel aquifer. A hydrograph of water-level measurements made in SB-42 is included in Appendix III. Water-level data from SB-42 shows that the regional water level on March 17, 2016 was higher than 85 percent of the daily water-level measurements made between October 2002 and March 2016 (see table and figure in Appendix III). This confirms that it is reasonable to use the March 17, 2016 groundwater elevation as the seasonal high.

6.3.1 Piezometer

Hydrographs showing groundwater and surface-water levels containing the measurements collected from each piezometer are provided in Appendix III. Table 4 shows the magnitude and direction of vertical flow through the stream/wetland bed for each of the piezometers.

With the exception of the July 28, 2015 water-level observed in PZ-B (likely impacted by discharge to SSDS-B) and the August 11, 2015 water-levels observed in PZ-C and PZ-D (impacted by a 1.5 inch precipitation event), the water-level data for the onsite wetland (PZ-A and PZ-B) and Stiles Creek (PZ-C and PZ-D) piezometers show a declining trend from July 16 through September 26, 2015. This was a seasonal decline which occurs in the late spring through early fall of each year because of increased evapotranspiration and higher intensity, lower duration, rainfall. The seasonal decline in water levels was reversed in October 2016.

Stiles Creek Piezometer PZ-C showed a downward or neutral hydraulic gradient between surface water (exterior measurement) and groundwater (interior measurement) during the study period, indicating that the upgradient portion of the creek near Hidden Brook Drive is a groundwater source or recharge location. With one exception (a downward gradient of 0.6 foot on August 11, following a 1.5 inch precipitation event), the downgradient portion of the creek showed a steady upward or neutral vertical flow gradient throughout the study period. No surface water was observed at piezometer locations PZ-A and PZ-B, therefore, the hydraulic gradient between the surface water and groundwater could not be determined.

6.4 Water-Quality Results

The results from the sampling event are presented in table 5. Parameter pH ranged from 6.35 to 10.95 in wells where there was enough water to measure. Fecal coliform was detected in samples from MW-3, MW-4, MW-5 and MW-7; the highest concentration was in MW-7, in excess of 2,419 colony forming units per 100 milliliters during the first sampling event. The fecal coliform detection in MW-7 has been attributed to wildlife in the area and not the existing SSDSs. Total Nitrogen and Total Kjeldahl Nitrogen was detected in excess for sample MW-12 (98 mg/L), collected during the second sampling event. The high nitrogen concentration in MW-12 may be attributable to the organic material observed in the geologic log 10 feet to 12 ft bg. Sample results for the third event are currently being processed. The laboratory reports are included in Appendix IV.

7.0 MOUNDI G ANALYSIS

A computer model was developed to simulate various load conditions for the SSDS, evaluate the associated groundwater mound and estimate the maximum load capacity for the site soils. The computer model was developed using MODFLOW-2005 by Harbaugh (2005). This code, published by the USGS, is currently the most widely used and accepted groundwater modeling code and has been used in numerous mounding projects in Connecticut that have been accepted by the CTDEEP.

7.1 Model Layers

The Lutheran Home Model (LHM) was developed as a two-dimensional, one-layer model. The hydrogeologic system was simulated as a water-table or unconfined aquifer. The bottom elevation for the LHM was assumed to be the top of bedrock. Bedrock elevation contours for the area were calculated using well log information from existing and new borings and the published USGS bedrock elevation maps (Mazzaferro, 1986A and 1986B) for the area.

7.2 Grid Design

Finite difference models, such as MODLFOW, require that the areas under investigation be divided into discrete sub-areas (blocks). The finite-difference grid developed for this model consists of 363 rows and 414 columns. The model utilized a variable-spaced grid. The grid spacing is finest in the SSDS areas, with node area dimensions of 10 feet by 10 feet. The distant areas have node area dimensions up to 78 feet by 79 feet. The model grid and boundary conditions for Layer 1 are shown on Plate 1.

7.3 Boundary Conditions

The eastern physical limit of the LHM is located along drainage basin divides. This boundary was simulated as a no-flow boundary in the model. The western LHM boundary, with the exception of the southern portion along the Pomperaug River, corresponds to the 10-foot saturated thickness contour line shown on Plate 1. This boundary was simulated as a flux boundary in the model. The flux boundaries add water to model boundaries that are normally no-flow boundaries in MODFLOW. A flux boundary is desirable along this model boundary to simulate lateral recharge entering the model from upland regions adjacent to the simulated area. The boundary was simulated by adding wells to the model nodes along the boundary. Each well represents groundwater underflow from the upland regions adjacent to the well. The amount of recharge that each region contributes to the aquifer is calculated by delineating (based on surface topography) the watershed area of the boundary region represented by the well and applying a recharge value to each area. The resulting rate was assigned to the well. For average conditions, the amount of recharge each simulated well contributed to the aquifer system was calculated using an average annual recharge to till of 8 inches per year and an average annual recharged to

stratified drift of 24 inches per year over the areas drained by each portion of the model boundary.

The northern physical limit of the simulated area is located approximately 2,500 feet north of the Southbury-Woodbury town line and the southern physical limit of the area modeled is located approximately 2,700 feet north of the Heritage Road Bridge. These boundaries simulate water entering and leaving the modeled area via groundwater underflow. The locations of these boundaries (Plate 1) were chosen because they are sufficiently distant from the area of interest as to not affect model predictions. In this case the flux boundary was simulated using the General Head (GHB) package in MODFLOW. The heads in the GHB package were depicted based on the regional groundwater contour map presented Mazzaferro (1986). The flux across a GHB boundary is dependent on the difference between a user-supplied specified head on one side of the boundary and the model calculated head on the other side.

The top boundary of the aquifer is the water-table and is treated in the model as a free-surface recharge boundary. Recharge from precipitation is added uniformly to each cell in Layer 1 of the model grid. The water-table can move up and down depending on the stresses in the model.

The bottom boundary of the model was chosen to be the contact between unconsolidated deposits and the bedrock interface. Some water may flow upward or downward from the bedrock to the unconsolidated deposits. However, the amount should be small enough such that no significant error will be introduced by assuming the no-flow boundary.

The Pomperaug, Stiles Brook, two unnamed tributaries and four ponds (two located near the northern model boundary, one located near the southern boundary and one located near the intersection of Hidden Brook Drive and Dublin Hill Road approximately 700 feet from SSDSB) are the only surface-water bodies that have been incorporated into the model. The Pomperaug River, Stiles Brook and the unnamed tributaries were simulated using the Stream Flow Routing Package (SFR) in MODFLOW. The locations of the SFR nodes are shown on Plate 1. The SFR package allows initial flow values to be entered at the model boundaries keeps track of flows into and out of the stream from the underlying aquifer and allows stream cells to go dry if the streamflow goes to zero. The SFR package also estimates stream stage utilizing a derivation of the Manning equation. Stream conductance (C) values (in feet per day) for each cell containing

a stream were initially calculated by LBG as described below. Stream conductance values were further adjusted during model calibration.

Conductance values were calculated to simulate leakage to and from the node by the equation:

where:

C = stream conductance (feet2/day);

K = vertical hydraulic conductivity of the streambed (feet/day);

A = area of the stream within the node (feet2); and

b = streambed thickness (feet).

In calculating the initial streambed conductance, the thickness of the streambed was assumed to be 1 foot. Initially, a uniform vertical hydraulic conductivity of 1.5 ft/day, 1.0 ft/day and 0.5 ft/day were used for the Pomperaug River, Stiles Brook and the unnamed tributaries, respectively. These values were estimated based on data presented in Mazzaferro (1986) and characteristics of streambed material observed by LBG personnel. Stream elevation and stream width data and average stage for the Pomperaug River, Stiles Brook and the unnamed tributaries were obtained from the USGS topographic map. The SRF also requires that the initial discharge be inputed in the first cell of each stream. Initial stream discharge values used for the Pomperaug River and Stiles Brook during model calibration was derived from the published stage and flow at the USGS Pomperaug River stream gage located approximately 0.7 mile downstream of the model domain.

Four ponds, two at the northern boundary, one near the southern boundary and one located approximately 700 feet for SSDSB are simulated with the Drain Package in MODFLOW. The drain package works in much the same way as the SRF Package, except that leakage from the drain to the aquifer is not allowed (Anderson and Woessner, 1992) and flow is not tracked throughout the area. This makes the drain package ideal for simulating small ponds. The location of the drain nodes are shown on Plate 1. Drain elevation and pond bed hydraulic conductance (identical to stream conductance) are the values required for the drain package. The drain elevations were determined from topographic maps. The initial vertical hydraulic conductivity was assumed to be 1 ft/day (based on field observations by LBG).

7.4 Model Input

The model requires three basic input parameters; recharge rates, horizontal and vertical hydraulic conductivity, and the size and shape of the proposed SSDS.

7.4.1 Recharge

The recharge rate used in the LHM is based on the average annual recharge for the Southbury area; estimated to be 24 inches per year to Layer 1. Recharge from infiltration of precipitation that falls directly on the aquifer is conservatively assumed to be approximately one-half of average annual precipitation. The other half of the total precipitation is lost to surface-water runoff and evapotranspiration. This estimate is based upon work by MacNish and Randall (1982) in New York State but is reasonable to apply to the study area because of the similarity of climates. The average annual precipitation recorded at the Northeast Regional Central data (NRCD) gage located in Woodbury, Connecticut for the period 1966-2006 was 50.40 inches, which correlates to a recharge rate of about 23.60 inches. A groundwater recharge rate for the LHM of 24 inches per year from precipitation falling directly on stratified-drift deposits is reasonable given these precipitation totals.

Average recharge values for the calibration and simulations were estimated by analyzing Pomperaug River stream flow records at the USGS gage in 2015 and 2016 (Appendix V). Data from the Pomperaug River gaging station was used for this analysis because of the stations close proximity and long-term continuous record (1932 – 2015). Estimated groundwater recharge was calculated using "WHAT" a web-based hydrograph separation system (K.J. Lim, et al., 2005). WHAT is a computer program that separates stream flow into groundwater and surface-water components and is used to estimate groundwater discharge (or recharge) from a basin (Starn and Brown, 2007).

7.4.2 Horizontal and Vertical Hydraulic Conductivity

The second input parameter required by the model is the horizontal hydraulic conductivity of the aquifer. The distribution of the initial horizontal hydraulic conductivity values for Layer 1 were derived from slug tests, sieve analysis, laboratory permeability tests, surficial geologic mapping for the area (Stone, Schafer, London and Thompson, 1992), boring

logs and the published soil survey mapping for the area (NRCS Webpage, http://soildatamart.nrcs.usda.gov).

The initial horizontal hydraulic conductivity values input into the LHM for Layer 1 ranged from 0.5 ft/day for the tighter units located throughout the region to 350 ft/day for the coarse sand and gravel glacial outwash deposits in the study area. All initial horizontal hydraulic conductivity values and distributions were adjusted during model calibration. For the LHM, the initial ratio of vertical to horizontal hydraulic conductivity was assumed to be 1:10, a value supported in published literature. This ratio was also adjusted during calibration.

Initial storage coefficient (specific storage in the model) and specific yield values for the study area were also derived from published data and professional judgment. The specific yield values input into the LHM was 0.01. These values were adjusted during model calibration.

7.4.3 Proposed and Existing SSDS Areas

The third input parameter required by the model, is the size and shape of the SSDS areas and the onsite storm water infiltration systems. Figure 2 shows the layout of the SSDS areas. The SSDS was simulated using the well package in MODFLOW.

The layout of the storm water infiltration systems are also shown on figure 2. The estimated daily infiltration from each of the systems was provided by Beta in the form of charts that showed total daily precipitation versus average daily storm water discharge (Appendix VI)

7.5 Model Calibration

Calibration is the process of adjusting the model input to produce the best match between simulated and observed water levels and groundwater runoff. For the LHM, a limited calibration was completed to ensure that the simulated surface-water vertical conductivity values were reasonable. The limited calibration was also used to ensure that the magnitude and orientation of the simulated groundwater contours was representative of the contours observed during the study period. The model was calibrated utilizing data from the 91-day transient period from July 1, 2015 through September 30, 2015. The water-level data recorded during the period, coupled with the abundance of other hydrogeologic data in the study area provide good data sets for model calibration. The data are also useful for evaluating streambed conductivity and leakage

values because the simulated groundwater elevations would be in error throughout the duration of the simulation if the model values were significantly in error.

The model was calibrated with the aid of the parameter estimation tools available in PEST-ASP (Watermark Computing, 2002). PEST-ASP is an automatic calibration computer program that uses nonlinear regression methods to minimize the sum of least squared-weighted residuals between simulated and observed hydraulic heads and groundwater discharges. At the end of the PEST-ASP simulations the aquifer parameters are reviewed to ensure that the resulting solution is hydrogeologically sound. If the solution is not reasonable, the process is repeated.

7.5.1 PEST-ASP Calibration Set-up

Four major steps must be completed before using PEST-ASP in the calibration process. The first step involves selection of the calibration targets. As stated above, the LHM was calibrated using groundwater-elevation data from the 2015 monitoring period.

The second step is to define the distribution (or zones) for each parameter. As discussed above, the distribution of hydraulic conductivity zones in the LHM were based on slug tests, sieve analysis, laboratory permeability tests, surficial geology mapping for the area (Stone, Schafer, London and Thompson, 1992), boring logs and the published soil survey mapping for the area (NRCS Webpage, http://soildatamart.nrcs.usda.gov). The distribution of storage zones for the model was initially uniform throughout the model domain. The calibrated horizontal conductivity values were then reviewed following the initial PEST-ASP calibration run to ensure a hydrogeologically-sound solution.

The next step is to determine what model parameters should be varied. For the LHM, all of the hydraulic conductivity values along with storage, areal recharge and pond/stream/bed conductance were allowed to vary during the limited calibration process.

Once the parameters to be varied were identified, the next (and last) step in the PEST-ASP calibration set-up was to determine reasonable upper and lower values for each zoned parameter. For the hydraulic conductivity the upper and lower bounds were based on data derived from the slug-test, boring data and professional judgment. For the pond/stream bed conductance parameter the upper and lower bounds were based on field observations and professional judgment.

A comparison between groundwater elevation contour map generated using the July 16, 2016 water-level data and the simulated groundwater elevation contour map (figure 5) show that the orientation of the groundwater contours and distribution of heads are reasonably similar.

The 91-day aquifer monitoring period from July 1 to September 31, 2015 was simulated to calibrate the model. The period was simulated using fourteen stress periods. The areal recharge and storm water infiltration for each stress period was estimated utilizing precipitation and/or stream-flow data recorded during the study period. Discharge from SSDS-A and SSDS-B were simulated at a constant rates of 280 gpd and 11,420 gpd, respectively during the calibration simulation.

The initial phase of the calibration process involved comparing simulated groundwater elevations to those recorded throughout the monitoring period. Hydrographs of simulated and observed water elevations are presented in Appendix VII. The plots show that the model is simulating the change in hydrologic stress reasonably well.

The monitoring location showing the greatest discrepancy is LBGMW-7. The discrepancies between the observed and simulated water levels at LBGMW-7 have been attributed to the well's shallow depth. The small discrepancies observed at the other monitoring locations are attributed the location proximity to an existing SSDS, storm water infiltration, surface bodies or localized variation in vertical conductivity that could not be incorporated into the model.

Water-level measurements made on July 16, July 28, August 11 and September 11, 2015 and the related simulated water elevations are presented in table 6. The table shows that 77 percent of the simulated water-level elevations are within 2.0 feet of the measured water-level elevations and that all are within 5 feett of the measured water-level elevations.

7.5.3 Calibrated Values

Final horizontal and vertical hydraulic conductivity values reached through the model calibration process are presented in Appendix VII. The calibrated values for hydraulic conductivity range from 0.1 ft/day to 115 ft/day. The simulated hydraulic conductivity beneath SSDS-A and SSDS-B was 1.1 ft/day, a value comparable to the 95-percent lower confidence

interval for geometric mean of 1.9 ft/day calculated from data derived from the field investigation.

The specific yield ranges from 0.0033 to 0.35. The simulated bottom permeability for the surface-water bodies simulated in the model ranged from 0.05 ft/day to 20 ft/day. The calibrated model files are contained on the attached Compact Disk.

7.6 Simulation Setup

The simulated average daily discharge from the existing SSDSs during the model calibration simulations and the groundwater-mounding simulations are shown on table 7. The average and design flows were provided by Beta. Beta estimated the average flow for each of the SSDSs using water-meter data obtained from Heritage Village Water Company.

The estimated daily infiltration from each of the storm water infiltration systems was based on an average daily precipitation of 0.138 inch which corresponds to 50.40 inches of precipitation per year. The layout of the storm water infiltration systems are shown on figure 2.

7.6.1 Mounding Criteria

Prior to the analysis, the following criteria were developed to evaluate if the onsite soils could accept the proposed design flow rate of 13,110 gpd.

<u>Criteria #1</u> - Post-mounding seasonal high groundwater could not be within 2 feet of the bottom of the modified SSDS-B leaching galleries. This criterion was selected (for treatment purposes) to prevent mounding into or within the proposed leaching beds.

<u>Criteria #2</u> - For areas outside the SSDS-B area the mounded water levels could not intersect land surfaces in areas not in close proximity to existing surface-water bodies. This criterion was selected to ensure that any renovated discharge breakout would enter directly into an existing surface water body and prevent exposure to non-renovated discharge water along hillside slopes.

<u>Criteria #3</u> - The mounded water levels could not intersect the existing stormwater infiltration systems located downgradient of the SSDS-B. This criterion was selected to ensure that the proposed modifications to the SSDS-B would not adversely impact the operation of these systems.

7.6.2 Model Simulations

Two model simulations were required to predict the amount of groundwater mounding that would result from the proposed design flow of 13,110 gpd. The first simulation was run so that the measured (March 17, 2016) season-high groundwater elevation, which already accounts for the average discharge of 11,700 gpd, could be corrected to be reflective of the proposed design flow of 11,700 gpd. To do this, the model was run to steady-state with the SSDSs discharging 1,410 gpd. The locations of the modified SSDS-B leaching galleries are shown on figure 6.

The simulated head difference between the average discharge of 11,700 gpd and the design flow of 13,110 gpd is reflective of the simulated additional groundwater mounding at the proposed design flow. This predicted additional mounding was then superimposed onto the season high (March 17, 2016) water-table contour map. Figure 6 shows the resulting post-mounding groundwater-elevation contour map at the design discharge flow and table 8 shows the difference between the bottom elevation of the SSDS-B and the existing stormwater infiltration system and the maximum post mounding groundwater elevation beneath the SSDS-B and stromwater infiltration disposal trenches.

Table 8 and figure 6 show that the maximum post-mounding groundwater elevation for SSDS-B is greater than 2 feet below the bottom of the SSDS. Thus, LHM demonstrates conformance with Criteria #1 and confirms the area should accept the proposed design rate without excess mounding beneath the proposed SSDSs. In addition, table 8 shows that the post-mounding groundwater elevations were below the bottom of the stormwater infiltration disposal trenches. Thus, LHM demonstrates conformance with Criteria #3.

Figure 7 shows the simulated post-mounding DTW in the study area for the design flow simulation. The figure shows that the post-mounding groundwater elevations do no intersect land surfaces outside the SSDS-B area in locations that are not near existing surface-water bodies. The LHM demonstrates conformance with Criteria #2 and confirms that, as currently designed, the areas outside the SSDS should accept the design disposal rate without unwanted breakout.

A second steady-state simulation was run to account for a 50-percent reserve in the mounding analysis. For this simulation a discharge rate of 19,665 gpd was simulated in the SSDS areas. The simulated groundwater mound was calculated for the design flow plus

50-percent reserve using the same methodology discussed above. The predicted groundwater mound was then superimposed onto the season high water-table contour map. The results from this analysis are summarized in table 8 and show that the maximum post-mounding groundwater elevation for SSDS-B is less than 2 feet below the bottom of each of the modified dispersal trenches. Table 8 also shows that the post-mounding groundwater elevations would mound into the stormwater infiltration disposal trenches. Based on these results, Criteria #1 and Criteria #3 were not met.

Based on the simulation results, the modified SSDS-B design would be viable in the designated are. aAlthough a secondary location would be necessary to account for the 50-percent reserve area.

8.0 TRAVEL TIME ANALYSIS

A travel-time analysis was conducted to ensure there is sufficient time for full die-off of pathogenic bacteria (about 21 days per Healy & May, 1982) prior to reaching any downgradient sensitive receptors, including property boundaries, surface-water bodies, and groundwater-supply wells. The analysis was completed using the post-mound, groundwater-elevation data and PATH3D (S.S. Papadopulos and Associates, Inc. 1989). PATH3D is a general particle tracking program for calculating groundwater paths and travel times. The program incorporates a velocity interpolator that converts hydraulic heads, hydraulic conductivity and porosity into a velocity and a numerical solver for tracing the movement of fluid particles in the groundwater flow system.

Figure 8 is a plot showing the predicted flow paths and 21-day travel distances of groundwater emanating from the SSDS areas. This evaluation was made more conservative by increasing the hydraulic conductivity values derived during model calibration in the SSDS areas to 4.3 ft/day, the 95-percent upper confidence interval for geometric mean derived from the field investigation data. A porosity of 0.30 was used for this analysis. The post-mounding, groundwater velocities ranged from less than 0.15 ft/day to 0.95 ft/day, which equate to 21-day travel distances of approximately 3 feet and 20 feet, respectively. These results indicate that the groundwater will not cross an adjacent property boundary, enter a surface-water body or reach any other downgradient sensitive receptor before 21 days of travel time is achieved.

9.0 CONCLUSION

The results of the above described mounding analyses indicate that the soil beneath the existing proposed SSDS areas should be able to accept the design flow of 13,110 gpd without excessive mounding although a secondary location would be necessary to account for the 50-percent reserve area. The analysis also indicates that the 21-day travel distance from the SSDS areas is adequate to prevent potential impact to downgradient sensitive receptors from pathogenic bacteria and breakout prior to bacteria die-off.

LEGGETTE, BRASHEARS & GRAHAM, INC.

Kenneth Faylor, CPG

Senior Associate/Hydrogeologist

Reviewed by: Michael Manolakas, CPG, LEP

Michael Manolakas, CPG, LEP Principal

nv March 28, 2016 H:\Beta Group\Luthern Home\Draft SSDS Report.doc

REFERENCES

Anderson, M.P., and W. W. Woessner, 1992, "Applied Groundwater Modeling, Simulating of Flow and Advective Transport", Academic Press.

Duffield, G.M., 2002, "AQTESOLV for Windows Version 3.5", HydroSolve, Inc., Reston, Virginia.

EasySolve Software, LLC, 1998, "SizePerm[©]".

Grossman, I.G. and Wilson, William E., 1970, "Hydrogeologic Data for the Lower Housatonic River Basin, Connecticut", U.S. Geologic Survey, Hartford, Connecticut" Connecticut Water Resources Bulletin No. 20.

Harbaugh, A.W., 2005, MODFLOW-2005, The U.S. Geological Survey modular ground-water model—the Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods 6-A16, variously p.

Healy, Kent A. and Randy May, 1982, "Seepage and Pollutant Renovation Analysis for Land Treatment, Sewage Disposal Systems", Connecticut Department of Environmental Protection, Water Compliance Unit.

Hyder, Z, J.J. Butler, Jr., C.D. McElwee and W. Liu ,1994, Slug test in partially penetrating wells, Water Resources Research, vol. 30, no. 11, pp. 2945-2957.

Mazzaferro, David, 1988, "Ground-Water Availability and Water Quality at Southbury and Woodbury, Connecticut", Water Resources Investigations Report 84-4221, U.S. Geological Survey, Hartford, Connecticut.

Mazzaferro, David, 1986A, "Ground-Water Availability and Water Quality at Southbury and Woodbury, Connecticut", Connecticut Water Resources Inventory Report, 84-4221.

Mazzaferro, David, 1986B, "Depth to Bedrock, Depth to Water table and Classification of Unconsolidated Materials Above the Water Table in Stratified-Drift Areas of Part of the Pomperaug River Valley, Southbury and Woodbury, Connecticut", U.S. Geological Survey, Hartford, Connecticut.

McDonald, M.G. and Harbaugh, A.W., 1988, "A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model" U.S. Geological Survey Techniques of Water Resources Investigations, Book 6, Chapter A1, P. 576.

Nathan L. Jacobson & Associates, Inc., "Guidance for Design of Large-Scale On-Site Wastewater Renovation Systems", February 2006, Connecticut Department of Environmental Protection, Bureau of Materials Management and Compliance Assurance.

REFERENCES (continued)

Pessl, Fred, Jr., 1966, "Surficial geologic map of the Southbury quadrangle" State Geological and Natural History Survey of Connecticut, Hartford, Connecticut.

Rodgers, John (compiler), 1985, "Bedrock geological map of Connecticut", Connecticut Geological and Natural History Survey, Natural Resources Atlas Series Map, 2 sheets, scale 1:125,000.

Rawson, Catherine et al, 2005, "Assessment of Current Conditions in the Pomperaug River Watershed", The Pomperaug River Watershed Coalition, Inc.

Rumbaugh, James O. and Douglas B. Raumbaugh, 2004, "Targpest Version 2.2", Environmental Simulations, Inc., Reinholds, PA.

Ruskauff, G.J., 1995, "User's Guide to Stochastic MODFLOW/MODPATH, A Monte-Carlo Version of MODFLOW and MODPATH", Proceedings of the 1994 Groundwater Modeling Conference, J.W. Warner and P. van der Heijde (eds), Fort Collins, Colorado, August 10-12

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Official Soil Series Descriptions [Online WWW]. Available URL: "http://soils.usda.gov/technical/classification/osd/index.html" [Accessed 4 December 2013]. USDA-NRCS, Lincoln, NE.

Starn, Jeffery J., Janet Radway Stone and John R. Mullaney, "Delineation and Analysis of Uncertainty of Contributing Areas to Wells at the Southbury Training School, Southbury, Connecticut", Water-Resources Investigations Report 00-4158, U.S. Geological Survey, East Hartford, Connecticut.

Stone, Janet Radway, John P. Schafer, Elizabeth Haley London and Woodrow B. Thompson, 1992, "Surficial Materials Map of Connecticut", U.S. Geological Survey, Hartford, Connecticut.

Tecsoft Inc., 1985-2001, "TECHMOUND Version 2.8".

Vukovic, M., Soro A., 1992, Water Resource Publication, "Determination of Hydraulic Conductivity of Porous Media from Grain Size Composition".

Watermark Computing, 2002, "PEST-ASP, Model-Independent Parameter Estimation, Version 5", Corinda, Australia.

Wilson, William E., Edward Burke, Chester E. Thomas, 1975. "Hydrologic Data for the Lower Housatonic River Basin, Connecticut", Water Resources Inventory of Connecticut, Part 5, Connecticut Water Resources Bulletin No. 19.

LEGGETTE, BRASHEARS & GRAHAM, INC.

LUTHERAN HOME OF SOUTHBURY 990 MAIN STREET NORTH SOUTHBURY, CONNECTICUT

SSDS Discharge CTDEEP Permitted Discharge

SSDS	1995 CTDEEP Permitted Discharge (gpd)	Average Discharge (October 2015 – February 2016) (gpd)	Proposed Discharge (Post Modification) (gpd)		
А	3,230	280	280		
В	10,930	11,420	12,830		
Total	14160	11,700	13,110		

gpd gallons per day

SSDS subsurface sewage disposal system

H:\Beta Group\Luthern Home\Report Tables.doc

LUTHERAN HOME OF SOUTHBURY 990 MAIN STREET NORTH SOUTHBURY, CONNECTICUT

Estimated Hydraulic Conductivity Values

Location ID	Hydraulic Conductivity (ft/day)	Method	Material	Sample Depth (ft bg)	Sample Saturated
	6.8	Slug Test	fine to medium sand	15 - 20	yes
LBGMW-1	3.9	Sauerbrei (sieve)	fine sand	8 -10	no
	6.9	Sauerbrei (sieve)	fine sand	19 - 20	yes
	1.3	Slug Test	fine sand	15 - 20	yes
LBGMW-2	4.8	Sauerbrei (sieve)	medium sand	4 - 6	no
	8.7	Sauerbrei (sieve)	medium sand	16 - 17	yes
	2.2	Slug Test	fine to medium sand	15 - 20	yes
LBGMW-3	5.3	Sauerbrei (sieve)	medium sand	6 - 8	no
	3.0	Sauerbrei (sieve)	medium sand	19 - 20	yes
	2.1	Slug Test	fine to medium sand	16 - 21	yes
LBGMW-4	16.0	Sauerbrei (sieve)	very fine gravel	4 - 6	no
	5.8	Sauerbrei (sieve)	fine sand	25 - 27	yes
	1.7	Slug Test	fine to medium sand	10 - 15	yes
LBGMW-5	6.7	Sauerbrei (sieve)	fine sand	6 - 8	no
LDOIVI VV-5	4.1	Sauerbrei (sieve)	medium sand	12 - 14	yes
	5.6	Sauerbrei (sieve)	fine sand	29 - 30	yes
	0.3	Slug Test	silt and clay	34 - 39	yes
LBGMW-6	8.6	Sauerbrei (sieve)	fine sand	10 - 12	no
	10.0	Sauerbrei (sieve)	fine sand	39 -40	yes
	0.5	Slug Test	medium sand	6 - 11	Yes
LBGMW-7	12.1	Sauerbrei (sieve)	medium sand	4 - 6	no
	8.5	Sauerbrei (sieve)	medium sand	10 - 11	yes
LBGMW-8	0.4	Slug Test	fine sand and silt	36 - 41	yes
LDOW W-0	6.9	Sauerbrei (sieve)	fine sand	15 - 17	no
B-1	1.5	Laboratory Permeability Test	fine sand	7	no
B-2	0.8	Laboratory Permeability Test	fine sand	5.5	no
D-2	0.3	Laboratory Permeability Test	fine sand	8	yes
B-3	0.5	Laboratory Permeability Test	fine sand	5.5	no
B-5	0.7	Laboratory Permeability Test	fine to medium sand	4.0	no
D- 2	1.5	Laboratory Permeability Test	fime sand	9.3	no
В-9	0.6	Laboratory Permeability Test	fine to medium sand	3.5	no
D-9	0.7	Laboratory Permeability Test	fine sand	7.5	no

ft/day feet per day

ft bg feet below grade

H:\Beta Group\Luthern Home\Report Tables.doc

LUTHERAN HOME OF SOUTHBURY 990 MAIN STREET NORTH SOUTHBURY, CONNECTICUT

Groundwater Measurements

Location	Depth To Groundwater (feet below grade)									
Date	7/1/2015	7/16/2015	7/28/2015	8/11/2015	9/24/2015	10/15/2015	1/18/2015	3/17/2016		
LBGMW-1	13.35	13.05	12.96	13.15	14.15	14.34	NM	11.40		
LBGMW-2	8.03	8.50	9.51	10.52	10.13	11.63	9.07	8.76		
LBGMW-3	13.49	10.41	11.11	11.45	12.41	12.56	10.81	9.76		
LBGMW-4	8.36	8.13	6.96	8.32	9.70	8.80	5.82	5.26		
LBGMW-5	12.19	12.57	12.98	13.46	NM	14.40	Dry	11.40		
LBGMW-6	21.12	22.41	22.94	23.45	25.44	26.03	26.03	21.14		
LBGMW-7	5.03	5.26	5.85	6.43	8.10	9.85	Dry	4.47		
LBGMW-8	23.69	24.26	24.73	25.27	27.17	27.85	27.10	22.73		
LBGMW-9	NM	NM	NM	NM	NM	NM	NM	10.20		
LBGMW-10	NM	NM	NM	NM	NM	NM	NM	1.70		
LBGMW-11	NM	NM	NM	NM	NM	NM	NM	1.23		
LBGMW-12	NM	NM	NM	NM	NM	NM	NM	7.60		
LBGMW-13	NM	NM	NM	NM	NM	NM	NM	9.37		
MW-A	NM	6.98	7.92	8.62	NM	NM	NM	NM		
B-1	NM	12.13	Dry	Dry	Dry	NM	NM	Dry		
В-2	NM	7.05	7.85	Dry	Dry	NM	NM	6.01		
В-3	NM	9.54	9.98	dry	Dry	NM	NM	6.96		
B-4	NM	7.21	7.84	8.65	Dry	NM	NM	5.39		
В-5	NM	Dry	Dry	Dry	Dry	NM	NM	Dry		
В-6	NM	Dry	Dry	Dry	Dry	NM	NM	Dry		
B-7	NM	12.42	12.50	12.50	Dry	NM	NM	Dry		
B-8	NM	Dry	Dry	Dry	Dry	NM	NM	Dry		
В-9	NM	9.03	9.52	9.98	Dry	NM	NM	8.20		
B-10	NM	Dry	Dry	Dry	Dry	NM	NM	Dry		
B-11	NM	Dry	Dry	Dry	Dry	NM	NM	8.64		
B-12	NM	Dry	Dry	Dry	Dry	NM	NM	Dry		
PZ-A	NM	0.11	0.34	0.53	1.59	0.84	0.01	0.97		
PZ-B	NM	1.00	1.22	2.43	3.73	3.28	1.17	0.50		
PZ-C	NM	-0.96	-0.82	-1.39	NM	NM	-0.98	-1.11		
PZ-D	NM	-0.89	-1.21	-0.68	NM	NM	-0.79	-0.85		

TABLE 3 (continued)

LUTHERAN HOME OF SOUTHBURY 990 MAIN STREET NORTH SOUTHBURY, CONNECTICUT

Groundwater Measurements

Groundwater Elevation (feet mean sea level)									
LBGMW-1	272.19	272.49	272.58	272.39	271.39	271.20	NM	274.14	
LBGMW-2	270.02	269.55	268.54	267.53	267.92	266.42	268.98	269.29	
LBGMW-3	264.02	267.10	266.40	266.06	265.10	264.95	266.70	267.75	
LBGMW-4	249.45	249.68	250.85	249.49	248.11	249.01	251.99	252.55	
LBGMW-5	295.75	295.37	294.96	294.48	NM	293.54	Dry	296.54	
LBGMW-6	283.39	282.10	281.57	281.06	279.07	278.48	278.48	283.37	
LBGMW-7	291.14	290.91	290.32	289.74	288.07	286.32	Dry	291.70	
LBGMW-8	294.18	293.61	293.14	292.60	290.70	290.02	290.77	295.14	
LBGMW-9	NM	273.48							
LBGMW-10	NM	274.34							
LBGMW-11	NM	273.45							
LBGMW-12	NM	272.29							
LBGMW-13	NM	270.79							
MW-A	NM	253.99	253.05	252.35	NM	NM	NM	NM	
B-1	NM	294.43	Dry	Dry	Dry	NM	NM	Dry	
B-2	NM	284.66	283.86	Dry	Dry	NM	NM	285.70	
B-3	NM	279.64	279.20	Dry	Dry	NM	NM	282.22	
B-4	NM	280.99	280.36	279.55	Dry	NM	NM	282.81	
B-5	NM	Dry	Dry	Dry	Dry	NM	NM	Dry	
B-6	NM	Dry	Dry	Dry	Dry	NM	NM	Dry	
B-7	NM	294.47	294.39	294.39	Dry	NM	NM	Dry	
B-8	NM	Dry	Dry	Dry	Dry	NM	NM	Dry	
B-9	NM	289.83	289.34	288.88	Dry	NM	NM	290.66	
B-10	NM	NM	Dry	Dry	Dry	NM	NM	Dry	
B-11	NM	NM	Dry	Dry	Dry	NM	NM	272.58	
B-12	NM	NM	Dry	Dry	Dry	NM	NM	Dry	
PZ-A	NM	267.34	267.11	266.92	265.86	266.61	267.44	266.48	
PZ-B	NM	268.88	268.66	267.45	266.15	266.60	268.71	269.38	
PZ-C	NM	284.09	283.95	284.52	NM	NM	284.11	284.24	
PZ-D	NM	275.65	275.97	275.44	NM	NM	275.55	275.61	

NM not measured

ft btoc

feet below top of casing.

ft msl feet above mean sea level

H:\Beta Group\Luthern Home\Report Tables.doc

LUTHERAN HOME OF SOUTHBURY 990 MAIN STREET NORTH SOUTHBURY, CONNECTICUT

Piezometer Water Level Measurements

	WETLAND										
Date	Measured Ground Water Elevation (ft msl)	Measured Surface Water Elevation (ft msl)	Field Head Difference (ft)	Field Gradient Direction	Date	Measured Ground Water Elevation (ft msl)	Measured Surface Water Elevation (ft msl)	Field Head Difference (ft)	Field Gradient Direction		
		PZ-A					PZ-B				
7/16/2015	267.34	Dry			7/16/2015	268.88	Dry				
7/28/2015	267.11	Dry			7/28/2015	269.66	Dry				
8/11/2015	266.92	Dry			8/11/2015	267.45	Dry				
9/23/2015	265.86	Dry			9/23/2015	266.15	Dry				
10/15/2015	266.61	Dry			10/15/2015	266.6	Dry				
1/18/16	267.44	Dry			1/18/16	268.71	Dry				
3/17/2016	266.48	Dry			3/17/2016	269.38	Dry				
				STILES	CREEK						
Date	Measured Ground Water Elevation (ft msl)	Measured Surface Water Elevation (ft msl)	Field Head Difference (ft)	Field Gradient Direction	Date	Measured Ground Water Elevation (ft msl)	Measured Surface Water Elevation (ft msl)	Field Head Difference (ft)	Field Gradient Direction		
		PZ-C					PZ-D				
7/16/2015	284.09	284.12	0.03	Down	7/16/2015	275.71	275.54	-0.17	UP		
7/28/2015	283.94	283.94	0.00	Neutral	7/28/2015	276.03	275.34	-0.69	UP		
8/11/2015	284.52	284.62	0.10	Down	8/11/2015	275.50	276.07	0.57	Down		
9/23/2015	NM	NM			9/23/2015	NM	NM				
10/15/2015	NM	NM			10/15/2015	NM	NM				
1/18/16	284.11	284.15	0.04	Down	1/18/16	284.55	284.52	-0.03	UP		
3/17/2016	284.62	284.27	0.03	Down	3/17/2016	284.61	284.61	0.01	Neutral		

Dry Dry

NA No data available

-- Not calculated

H:\Beta Group\Luthern Home\Report Tables.doc

LUTHERAN HOME OF SOUTHBURY 990 MAIN STREET NORTH SOUTHBURY, CONNECTICUT

Summary of Laboratory Water-Quality Data

Well/PZ ID	Date	рН	Total Nitrogen	Nitrite	Nitrate	Ammonia	Total Phosphorous	Orthophosphate	Total Kjeldahl Nitrogen	Total Dissolved Phosphorous	Fecal Coliform
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(CFU/100 ml)
MW-1	9/23/2015	7.73	19	ND<0.10	ND<0.10	22	2.6	1.9	19	2.4	0
IVI W - 1	11/6/2015	6.42	21	ND<0.10	ND<0.10	21	2.3	1.4	21	0.19	NS
	9/23/2015	10.95 /1	13	ND<0.10	ND<0.10	12	2.1	1.6	13	1.9	0
MW-2	11/6/2015	6.35	12	ND<0.10	ND<0.10	12	2.3	2.3	12	0.73	NS
	2/10/2016	6.59 /3	14	ND<0.10	ND<0.10	12	2.5	0.74	14	NS	NS
	9/23/2015	7.2	5.1	ND<0.10	0.16	4.4	ND<0.10	0.12	4.9	ND<0.10	3
MW-3	11/6/2015	6.37	4.8	ND<0.10	ND<0.10	4.2	ND<0.10	ND<0.10	3.4	0.2	NS
	2/10/2016	6.62 /3	5.5	ND<0.10	ND<0.10	4.5	ND<0.10	0.11	5.5	NS	NS
MW-4	9/23/2015	7.16	2.8	ND<0.10	2.8	ND<0.10	ND<0.10	ND<0.10	ND<1.0	ND<0.10	2
MW-4	2/10/2016	6.91 /3	2.8	ND<0.10	2.8	0.2	ND<0.10	ND<0.10	ND<1.0	NS	NS
MW-5	9/24/2015	/2			We	ell went dry - not e	enough water for a	nalysis			10
	9/24/2015	8.37	ND<1.2	ND<0.10	0.37	ND<0.10	ND<0.10	ND<0.10	ND<1.0	ND<0.10	<1
MW-6	2/10/2016	8.02 /3	ND<1.2	ND<0.10	0.38		ND<0.10	ND<0.10	ND<1.0	NS	NS
MW-7	9/24/2015	/2	2.2	ND<0.10	ND<0.10	0.14	3.6	ND<0.10	2.2	1.6	>2419
	9/24/2015	8.22	1.4	ND<0.10	ND<0.10	ND<0.10	0.11	ND<0.10	1.4	0.1	<1
MW-8	2/10/2016	7.97 /3	4.8	ND<0.10	0.1	0.24	29	0.85	4.7	NS	NS
MW-9	2/9/2016	6.77 /3	12	ND<0.10	ND<0.10	12	0.36	0.33	12	NS	NS
MW-10	2/10/2016	6.59 /3	6.1	ND<0.10	4.4	0.13	0.87	0.13	1.7	NS	NS
MW-11	2/9/2016	6.81 /3	ND<1.2	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.16	ND<1.0	NS	NS

LUTHERAN HOME OF SOUTHBURY 990 MAIN STREET NORTH SOUTHBURY, CONNECTICUT

Total Total Total Total Fecal Nitrite Nitrate Ammonia Orthophosphate Kjeldahl Dissolved Well/PZ Nitrogen Phosphorous Coliform Nitrogen Phosphorous Date pН ID (CFU/100 ml) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 6.43 /3 MW-12 2/10/2016 98 ND<0.10 ND<0.10 ND<0.10 31 ND<0.10 98 NS NS 6.98 /3 MW-13 2/10/2016 2.7 ND<0.10 ND<0.10 2.6 ND<0.10 ND<0.10 2.7 NS NS /2 10/1/2015 NS NS NS NS 0 NS NS NS NS PZ-A 11/6/2015 6.5 3.4 ND<0.10 ND<0.10 0.16 0.44 ND<0.10 3.4 0.18 NS 10.0 /3 2/10/2016 3.3 ND<0.10 ND<0.10 0.5 0.32 0.13 3.3 NS NS /2 10/1/2015 NS NS NS NS NS NS 9 NS 0 PZ-B 11/6/2015 6.7 18 ND<0.10 ND<0.10 1.3 8.1 ND<0.10 18 ND<0.10 NS 10.3 /3 2/10/2016 1.8 ND<0.10 ND<0.10 0.23 ND<0.10 ND<0.10 1.8 NS NS

Summary of Laboratory Water-Quality Data

mg/L milligrams per liter

CFU/100 Colony Forming Units per 100

ml milliliter

ND Not Detected

NS Not Sampled

/1 May be erroneous reading, YSI malfunctioned during sampling

/2 Not enough water in well to low-flow sample, sample was collected as a grab sample and pH was not measured.

/3 pH analyzed by laboratory vs. field measurement

LUTHERAN HOME OF SOUTHBURY 990 MAIN STREET NORTH SOUTHBURY, CONNECTICUT

Observed versus Simulated Groundwater Elevations

Name	Date	Simulation Time (days)	Observed Groundwater Elevation (ft msl)	Simulated Groundwater Elevation (ft msl)	Residual (feet)
MW-1	7/16/2015	15.5	273.24	273.02	0.22
MW-1	7/28/2015	27.4	272.33	272.84	-0.51
MW-1	8/11/2015	41.4	272.14	272.62	-0.48
MW-1	9/23/2015	84.4	271.14	271.99	-0.85
MW-2	7/16/2015	15.7	269.66	269.88	-0.22
MW-2	7/28/2015	27.4	268.15	269.62	-1.47
MW-2	8/11/2015	41.4	267.14	269.28	-2.14
MW-2	9/23/2015	84.4	267.53	268.32	-0.79
MW-3	7/16/2015	15.7	266.65	265.26	1.39
MW-3	7/28/2015	27.4	265.95	265.12	0.83
MW-3	8/11/2015	41.4	265.61	264.90	0.71
MW-3	9/23/2015	84.5	264.65	264.18	0.47
MW-4	7/1/2015	0.6	249.07	248.96	0.11
MW-4	7/28/2015	27.4	250.47	247.63	2.84
MW-4	8/11/2015	41.4	249.10	246.85	2.25
MW-4	9/23/2015	84.5	247.73	244.83	2.90
MW-5	7/1/2015	0.6	293.98	294.09	-0.11
MW-5	7/2/2015	1.3	295.75	294.08	1.67
MW-5	7/16/2015	15.5	295.37	293.81	1.56
MW-5	7/28/2015	27.5	294.96	293.52	1.44
MW-5	8/11/2015	41.0	294.48	293.19	1.29
MW-6	7/16/2015	15.5	282.10	282.94	-0.84
MW-6	7/28/2015	27.5	281.57	282.53	-0.96
MW-6	8/11/2015	41.4	281.06	282.03	-0.97
MW-6	9/24/2015	85.4	279.07	280.51	-1.44
MW-7	7/16/2015	15.5	290.91	287.13	3.78
MW-7	7/28/2015	27.5	290.32	287.06	3.26
MW-7	8/11/2015	41.4	289.74	286.97	2.77
MW-7	9/23/2015	84.4	288.07	286.60	1.47
MMW-8	7/16/2015	15.5	293.31	294.73	-1.42
MMW-8	7/28/2015	27.5	293.14	294.39	-1.25
MMW-8	8/11/2015	41.4	292.60	293.97	-1.37
MMW-8	9/23/2015	84.5	290.70	292.67	-1.97

LUTHERAN HOME OF SOUTHBURY 990 MAIN STREET NORTH SOUTHBURY, CONNECTICUT

Observed versus Simulated Groundwater Elevations

Name	Date	Simulation Time (days)	Observed Groundwater Elevation (ft msl)	Simulated Groundwater Elevation (ft msl)	Residual (feet)
B-1	7/16/2015	15.5	294.43	291.51	2.92
B-2	7/16/2015	15.5	284.66	281.94	2.72
B-2	7/28/2015	27.5	283.86	281.55	2.31
В-3	7/16/2015	15.5	280.64	279.13	1.51
B-3	7/28/2015	27.5	279.20	278.72	0.48
B-4	7/16/2015	15.4	280.99	280.13	0.86
B-4	7/28/2015	27.5	280.36	279.73	0.63
B-4	8/11/2015	41.4	279.55	279.29	0.26
B-7	7/28/2015	27.5	294.39	294.47	-0.08
B-7	8/11/2015	41.4	294.39	294.47	-0.08
B-9	7/16/2015	15.5	289.83	287.23	2.60
B-9	7/28/2015	27.5	289.34	287.06	2.28
B-9	8/11/2015	41.4	288.88	286.86	2.02
MW-A	7/16/2015	15.7	253.99	254.99	-1.00
MW-A	7/28/2015	27.4	253.05	254.46	-1.41
MW-A	8/11/2015	41.4	252.35	253.91	-1.56
PZ-A	7/16/2015	15.5	267.34	267.09	0.25
PZ-A	7/28/2015	27.5	267.11	267.07	0.04
PZ-A	8/11/2015	41.5	266.92	267.05	-0.13
PZ-B	7/16/2015	15.5	268.88	270.10	-1.22
PZ-B	7/28/2015	27.5	269.66	270.08	-0.42
PZ-B	8/11/2015	41.5	267.45	270.07	-2.62
PZ-C	7/16/2015	15.5	284.09	285.20	-1.11
PZ-C	7/28/2015	27.5	283.94	285.10	-1.16
PZ-C	8/11/2015	41.4	284.52	285.04	-0.52
PZ-D	7/16/2015	15.5	275.71	274.27	1.44
PZ-D	7/28/2015	27.5	276.03	274.21	1.82
PZ-D	8/11/2015	41.5	275.50	274.16	1.34

LUTHERAN HOME OF SOUTHBURY 990 MAIN STREET NORTH SOUTHBURY, CONNECTICUT

Observed versus Simulated Groundwater Elevations

Name	Date	Simulation Time (days)	Observed Groundwater Elevation (ft msl)	Simulated Groundwater Elevation (ft msl)	Residual (feet)					
Summary Statistics for Targets Above										
Residual Mean				0.40	ft					
Abs. Residual Mean				1.32	ft					
Res. Standard Deviation				1.56	ft					
root mean squared (RMS)				1.60	ft					
Residual Sum of Squares				156.38						
Percent Within 1 ft				41.1%						
Percent Within 2 ft				77.7%						
Percent Within 5 ft				100.0%						
Min Residual				-2.62	ft					
Max Residual				3.78	ft					
Range of observations				48.02						
Number of targets				61						

gpd gallons per day

SSDS subsurface sewage disposal system

H:\Beta Group\Luthern Home\Report Tables.doc

LUTHERAN HOME OF SOUTHBURY 990 MAIN STREET NORTH SOUTHBURY, CONNECTICUT

Simulated SSDS Discharge

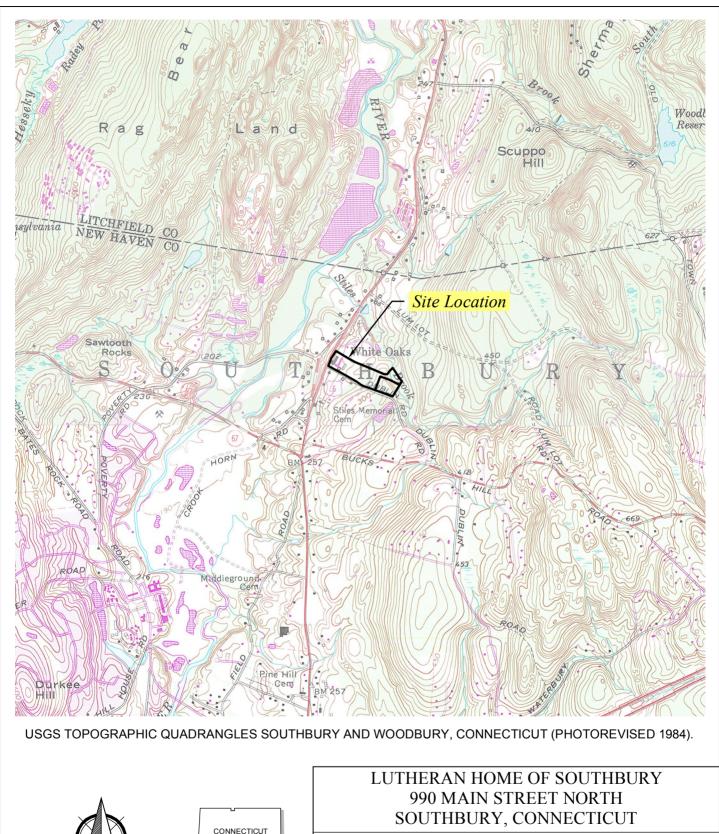
SSDS	Calibration Simulation (gpd)	Mounding Simulations Average Discharge (October 29, 2015 – February 29, 2016) (gpd)			
А	280	280			
В	11,420	No Simulated			
Modified B	Not Simulated	12,830			
Total	11,700	13,110			

gpd gallons per day

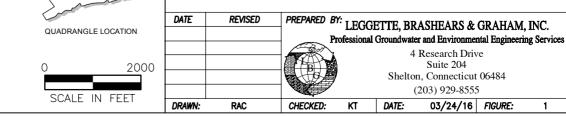
SSDS subsurface sewage disposal system

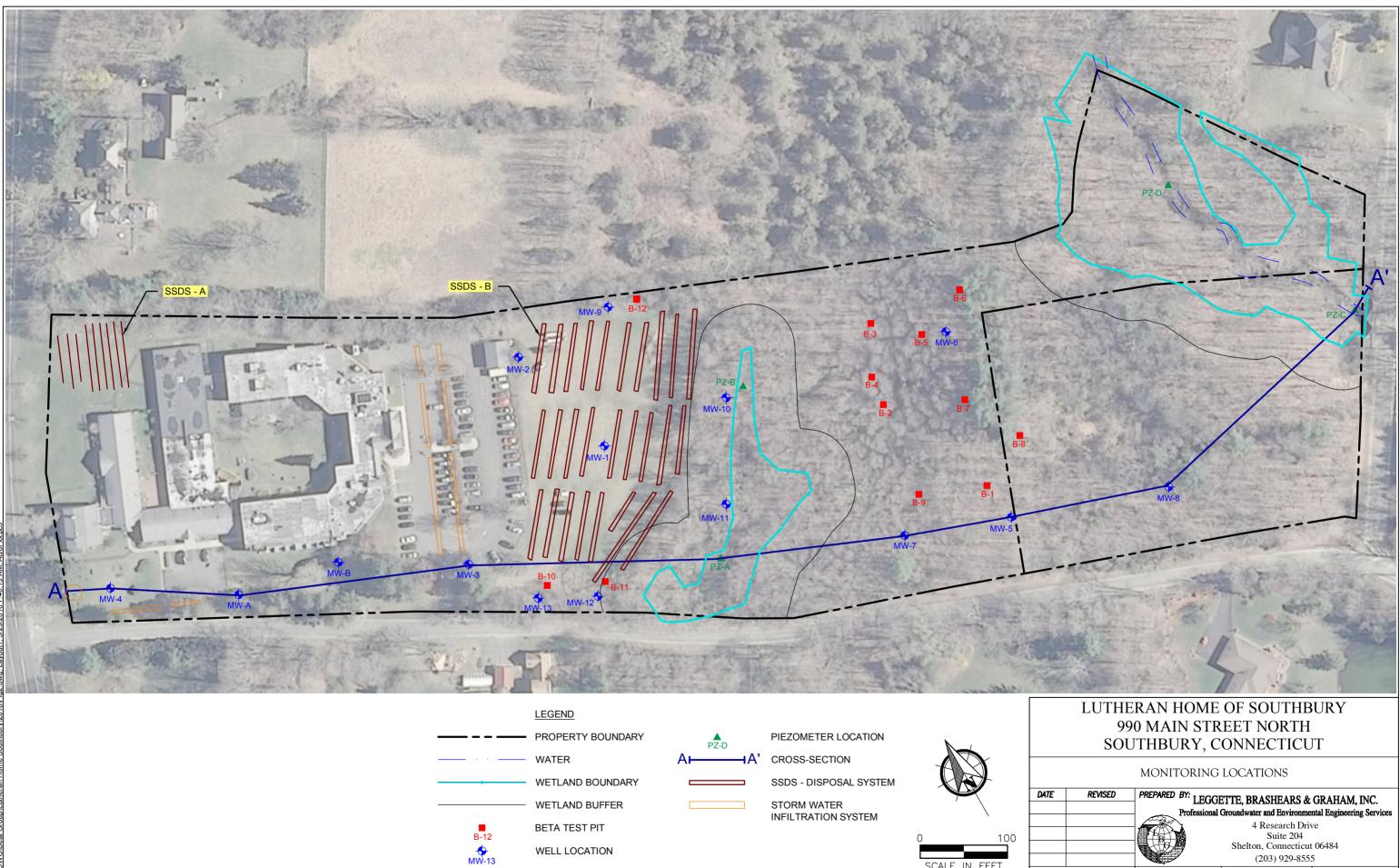
 $K: \label{eq:loss} We the the set of Southbury \ reporting \ Report \ Tables. doc$

LUTHERAN HOME OF SOUTHBURY 990 MAIN STREET NORTH SOUTHBURY, CONNECTICUT

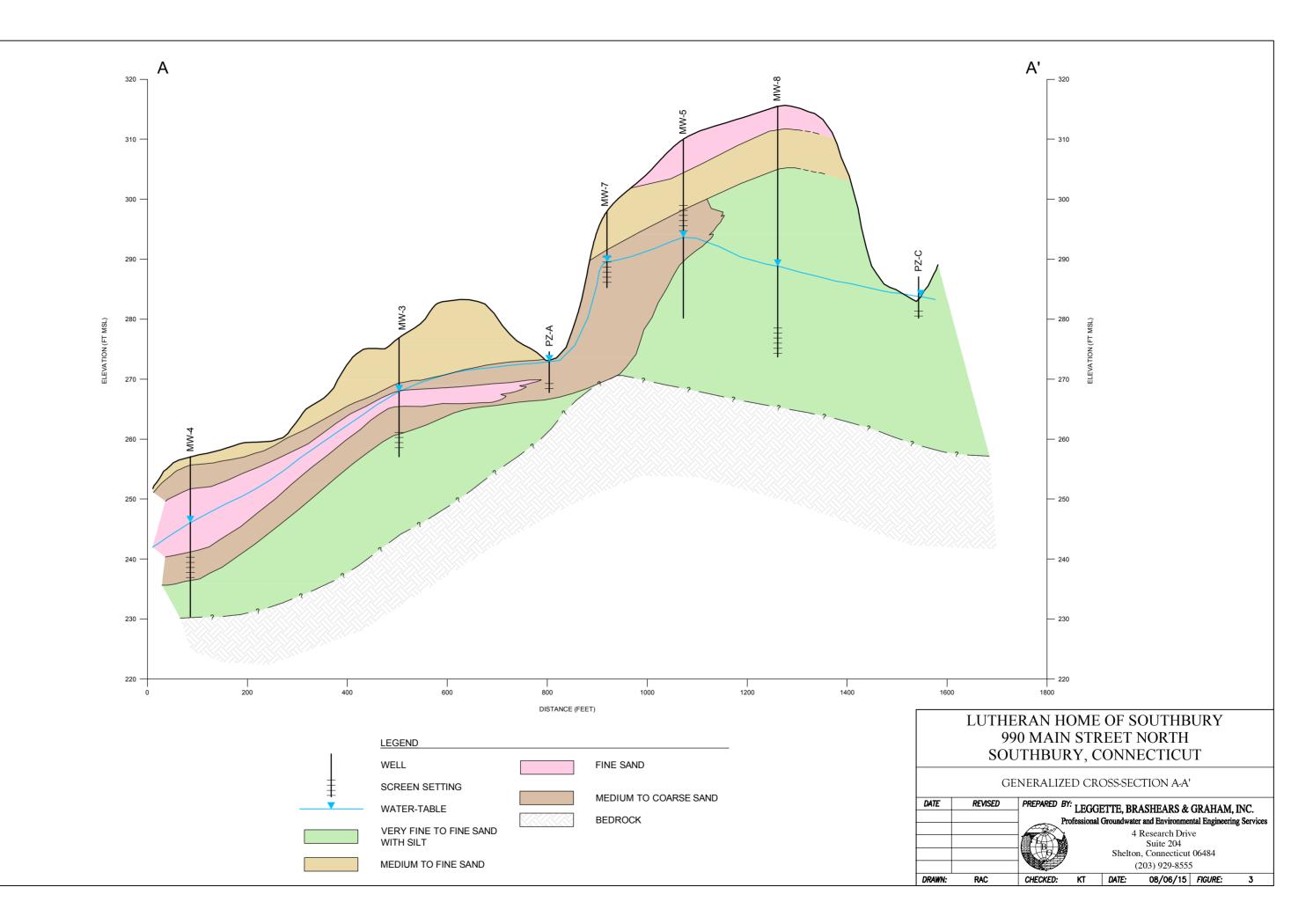

SSDS Bottom Elevations and Post-Mounding Groundwater Elevations

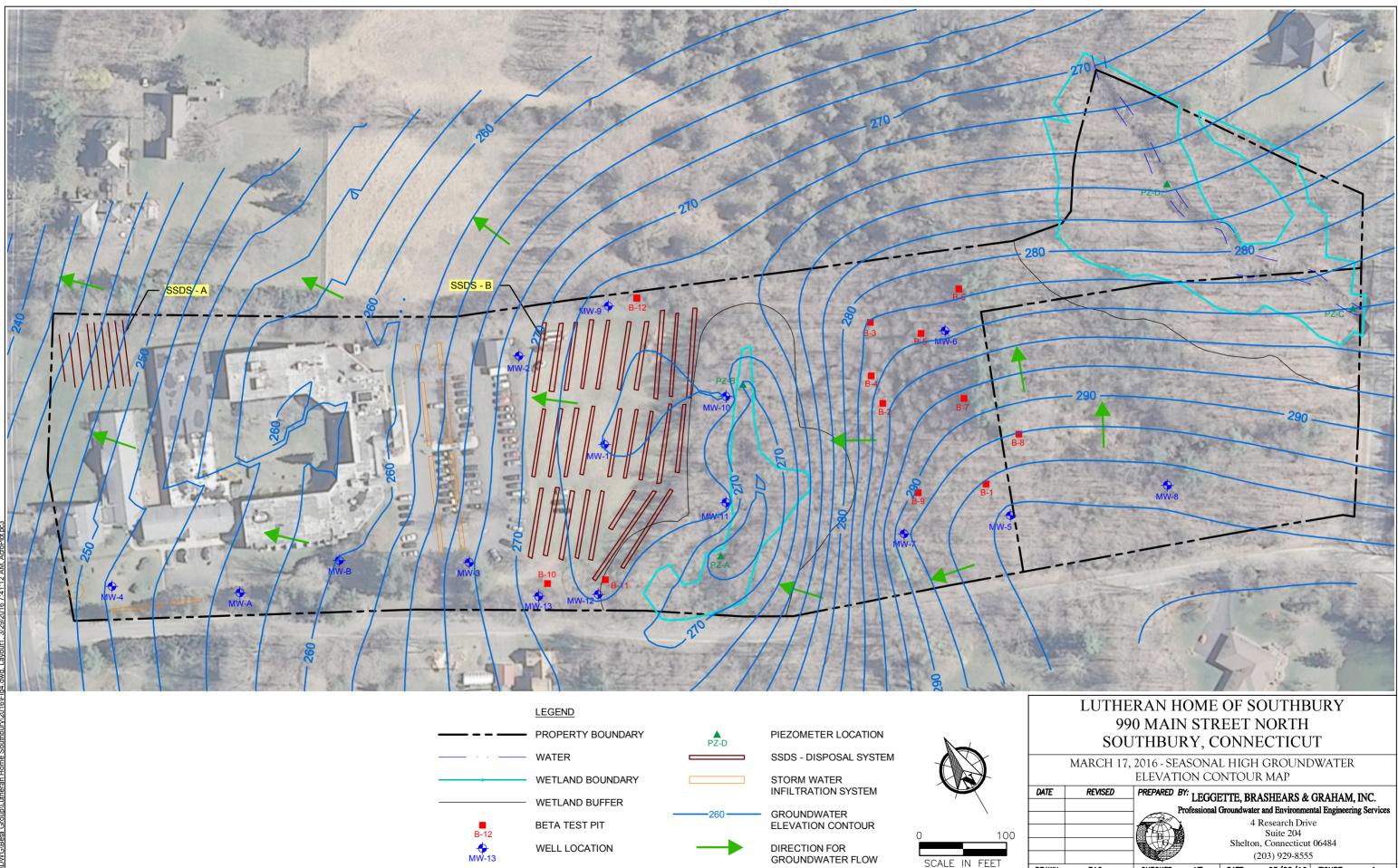
Dispersal Trench	Bottom of SSDS Elevation	Maximum Post-Mounding Groundwater Elevation	Difference Between Bottom of System and Maximum Groundwater Elevation
	(ft msl)	(ft msl)	(feet)
		Design Flow	
		Modified SSDS-B	
1	277.83	272.23	5.60
2	278.83	273.44	5.39
3	279.83	274.41	5.42
4	279.83	275.11	4.72
5	279.83	275.15	4.68
6	279.83	275.15	4.68
	Storr	nwater Infiltration System	<u> </u>
DMH-6	265.1	265.03	0.07
DMH-7	267.80	266.92	0.88
DMH-8	266.85	263.77	3.08
DMH-9	266.85	265.41	1.44
DMH-10	266.35	262.52	3.83
DMH-11	266.50	264.22	2.28
	Design F	low Plus 50-Percent Reserve	
1	277.83	276.51	1.32
2	278.83	277.88	0.95
3	279.83	278.89	0.94
4	279.83	279.44	0.39
5	279.83	279.47	0.36
6	279.83	279.27	0.56
	Storr	nwater Infiltration System	
DMH-6	265.1	267.04	-1.94
DMH-7	267.80	269.08	-1.28
DMH-8	266.85	265.54	1.31
DMH-9	266.85	267.84	-0.99
DMH-10	266.35	264.27	2.08
DMH-11	266.50	266.23	0.27

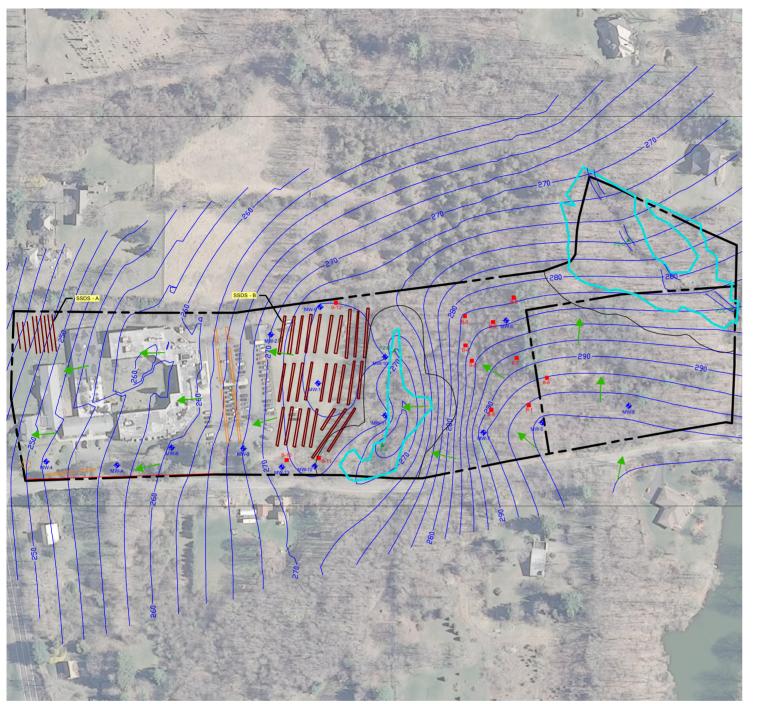

ft msl feet above mean sea level

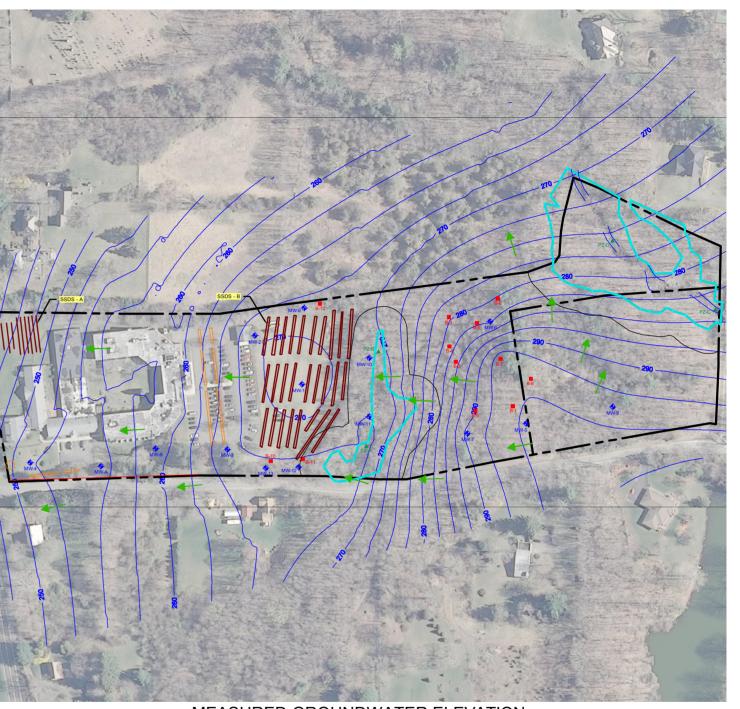

SSDS subsurface sewage disposal system

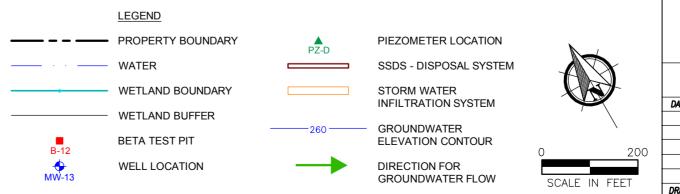
FIGURES





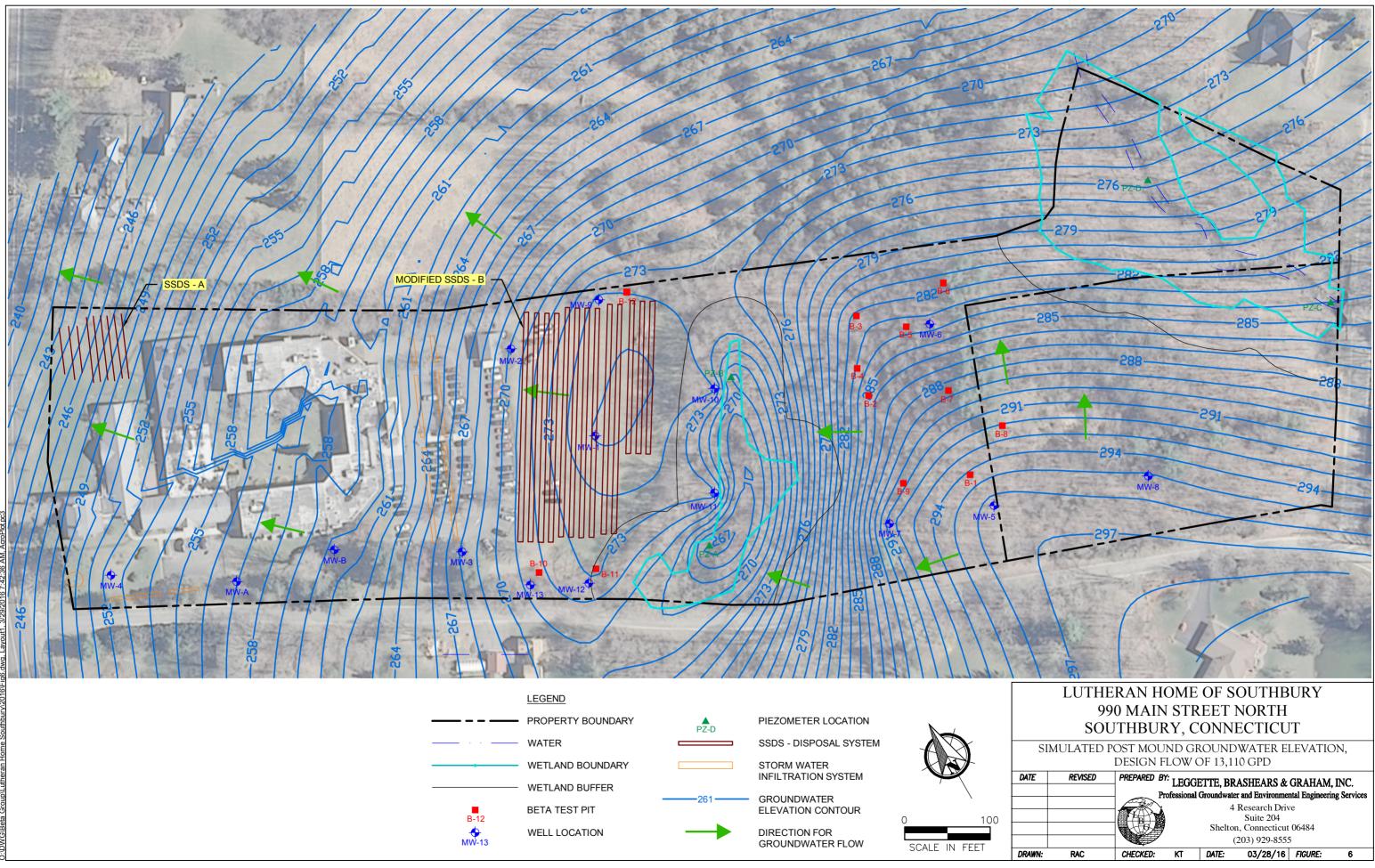

DATE	REVISED	PREPARED BY	PREPARED BY: LEGGETTE, BRASHEARS & GRAHAM, INC.							
		Pro Pro	Professional Groundwater and Environmental Engineering Services							
				Shelton	Research Driv Suite 204 n, Connecticut 203) 929-8555	06484	-			
DRAWN:	RAC	CHECKED:	кт	DATE:	03/25/16	FIGURE:	2			


SCALE IN FEET

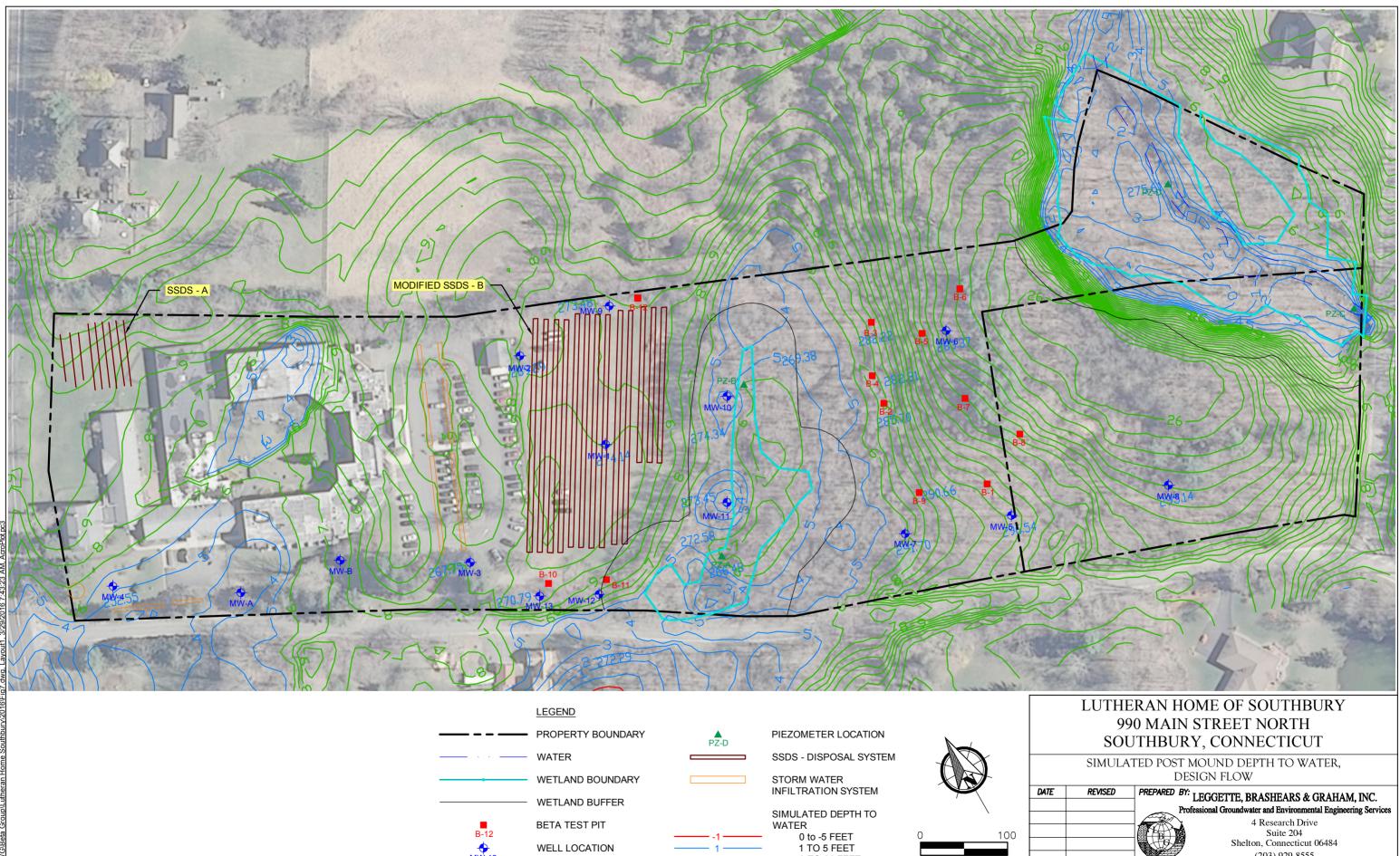


DATE	REVISED	PREPARED BY	PREPARED BY: LEGGETTE, BRASHEARS & GRAHAM, INC.						
		Pn Pn	Professional Groundwater and Environmental Engineering Services						
				Shelton	Research Driv Suite 204 n, Connecticut 203) 929-8555	06484			
DRAWN:	RAC	CHECKED:	кт	DATE:	03/28/16	FIGURE:	4		

SIMULATED GROUNDWATER ELEVATION



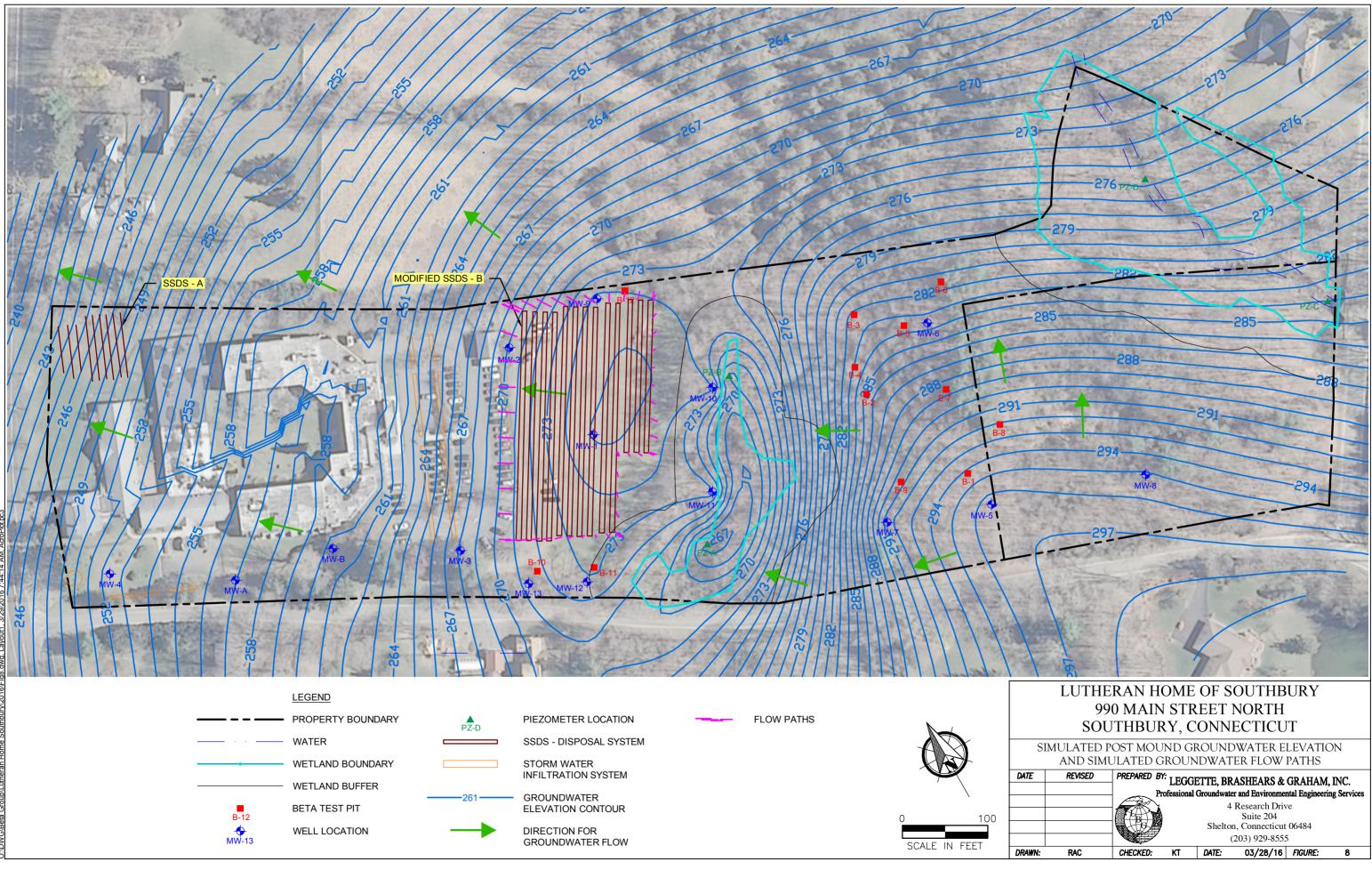
MEASURED GROUNDWATER ELEVATION


LUTHERAN HOME OF SOUTHBURY 990 MAIN STREET NORTH SOUTHBURY, CONNECTICUT

JULY 16, 2015 - SIMULATED VERSUS MEASURED GROUNDWATER ELEVATION CONTOUR MAP

ATE	REVISED	PREPARED B	^{(:} LEGGI	ETTE, BR	ASHEARS &	GRAHAM	, INC.				
		Pr	ofessional	Groundwat	er and Environmer	ntal Engineeri	ng Services				
			4 Research Drive Suite 204								
				Shelto	n, Connecticut	06484					
					(203) 929-8555	5					
RAWN:	RAC	CHECKED:	ĸī	DATE:	03/28/16	FIGURE:	5				

DATE	REVISED	PREPARED BY	² LEGGI	ETTE, BR	ASHEARS &	GRAHAM	, INC.			
		R	PARED BY: LEGGETTE, BRASHEARS & GRAHAM, INC. Professional Groundwater and Environmental Engineering Services 4 Research Drive Suite 204 Shelton, Connecticut 06484 (203) 929-8555							
RAWN:	RAC	CHECKED:	кт	DATE:	03/28/16	, FIGURE:	6			

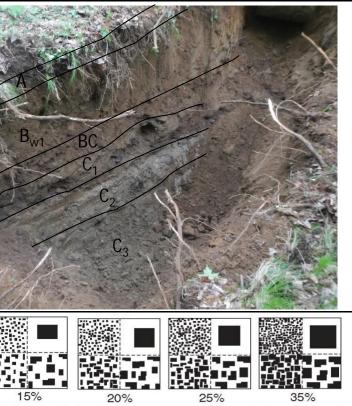

6 TO 26 FEET

SCALE IN FEET

MW-13

WELL LOCATION

DATE	REVISED	PREPARED BY	PREPARED BY: LEGGETTE, BRASHEARS & GRAHAM, INC.						
		Pro	Professional Groundwater and Environmental Engineering Services						
				Shelto	Research Driv Suite 204 n, Connecticut (203) 929-8555	06484			
DRAWN:	RAC	CHECKED:	ĸt	DATE:	03/28/16	FIGURE:	7		


DATE	REVISED	PREPARED B	PREPARED BY: LEGGETTE, BRASHEARS & GRAHAM, INC.							
		Pr Pr	Professional Groundwater and Environmental Engineering Services							
				Shelto	Research Driv Suite 204 n, Connecticut (203) 929-8555	06484				
RAWN:	RAC	CHECKED:	кт	DATE:	03/28/16	FIGURE:	8			

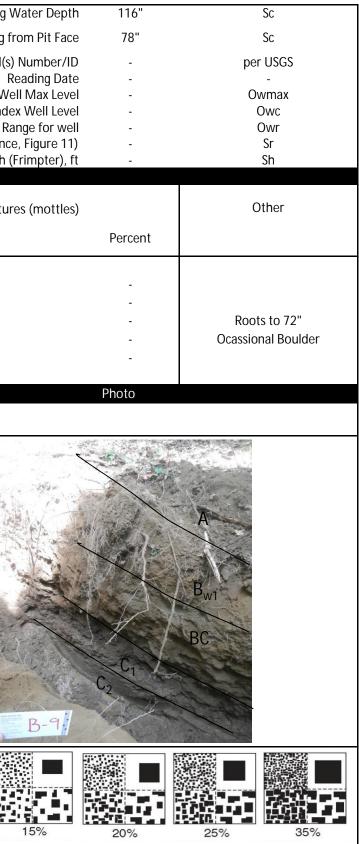
APPENDIX I GEOLOGIC LOGS

BETA TEST PIT AND WELL LOGS

Test Hole ID:	B-1	(See map for location)					Groundwater Data		Standing Water Depth	132"	Sc
Weather	Overcast, 50-60 deg.F						Sh = Sc - [(Sr/Owr)*((Owc-Owmax)]	or, Depth Weeping from Pit Face	132"	Sc
Date:	May 21, 2015	(Thursday)					Frimpter Adjustmen	t	USGS Index Well(s) Number/ID	-	per USGS
Soil Evaluator		A Group, Inc. / Joseph Feder aug BOH), Ramona Goode (0		ton Dovina)	Malti Accociat	00			Reading Date Index Well Max Level	-	- Owmax
Present	Jue Kinetz (Pumper	auy don), Ramona Goode (C	, DEEP), Pele (nai wii	non Paving),		es			Index Well Viax Level	-	Own
Project:	Lutheran Home of S	Southbury - Wastewater Trea	atment and Dispersal S	System Impr	ovements				Max Range for well	-	Owr
Project / Number	05051.035						Range in lev		ography (5% exceedence, Figure 11)	-	Sr
						Test Hole Log		Pre	edicted Adjusted Depth (Frimpter), ft	-	Sh
		Soil Matrix Color - Moist		Coarse Fr	agments % by	rest hole Log					
Depth	Soil Horizon (Layer)	(Munsell)	Soil Texture (USDA)		olume	Structure	Consistence		Redoximorphic Features (mottles)		Other
(inches)			(USDA)	Gravel	Cobbles & Stones			Depth	Color	Percent	(Roots, Etc.)
0 - 14"	А	10YR 4/3	Fine Sandy Loam	-	-	GR	FR	-	-	-	
14 - 32"	B _w	10YR 4/4	Fine Sandy Loam	1%	0%	SBK	FIP-FIH	-	-	-	Roots to 31"
32 - 60"	BC	7.5YR 4/4	Fine Sandy Loam	1%	0%	MA	FIP-FIH	48"	2.5YR4/6 to 7.5RY 4/2	5%	
60 - 72" 72 - 128"	C ₁	10YR 5/4 10YR 5/4	Fine Sandy Loam	25%	0% 2%	MA MA	FIP-FIH FIP-FIH	-	-	-	
128" +	C ₂ C ₃	7.5YR 4/4	Fine Sandy Loam Sandy Loam	2% 0%	2% 0%	MA	FIP-FIH FIP-FIH	-	-	-	
	gic Setting and Topog		Sandy Loann	070		and Structure	1 11 -1 11 1			Photo	
Landform	Landscape Position		Texture (USDA)	Coarse	Fragments	Structure	Consistence	Redox %			
Drumlin	Summit (SU)	Dense Compact	Coarse Sand	Gravel =	Cobble =	Granular (GR)	Loose (L)	Few (F) <2%			disc. 1
Till Ridge	Shoulder (SH)	(Lodgement) Glacial Till Loose Ablation (Melt-out) Till	Sand	2mm to 3"	3" to 10" Stone = 10" to 25"	Angular Blocky (ABK)	Very Friable (VFR)	Common 2 to <20%		But	A
Ground Moraine	Backslope (BS)		Fine Sand		Boulder = >25"	Subangular Blocky (SBK)	Friable (FR)	Many >20%		BC	
Moraine (End / Recessional)	Footslope (FS)	Lacustrine	Loamy Sand			Platy (PL)	Firm (FI)				
Kettle	Toeslope (TS)	Ice-Contact Outwash	Sandy Loam			Structureless	Very Firm (VFI)		and the second second	61	
Kame	Channel (CH)	Proglacial Outwash	Fine Sandy Loam			Single Grain (SG) Extremely Firm (EF)		a set of the		
Esker Outwash Plain Lacustrine Plain Floodplain		Eolian Deposits Marine Silts & Clays	Loam Silt Loam Sandy Clay Loam Silty Clay			Massive (MA)	Firm in Place, Friable	e in Hand (FIP-FIH)		62	
Swamp		Human-Made/Transported Materials (Fill)	Clay							C3	B-1
Other		Other								The second secon	hand a second
Comments:								-			
								2%	5% 15%	20%	25% 35%

Test Hole ID:	B-2	(See map for location)					Groundwater Data		Standing Water Depth	-	Sc
Weather	Overcast, 50-60 deg.F						Sh = Sc - [(Sr/Owr)*	(Owc-Owmax)]	or, Depth Weeping from Pit Face	67"	Sc
Date:	May 21, 2015	(Thursday)					Frimpter Adjustmen	t	USGS Index Well(s) Number/ID	-	per USGS
Soil Evaluator		A Group, Inc. / Joseph Fede							Reading Date	-	
Present	Joe Kmetz (Pomper	aug BOH), Ramona Goode ((CT DEEP), Pete (Harwir	nton Paving),	, Welti Associat	es			Index Well Max Level	-	Owmax
Project:	Lutheran Home of 9	Southbury - Wastewater Tre	atmont and Disporsal	Systam Impr	ovements				Index Well Level Max Range for well	-	Owc Owr
Project / Number	05051.035			Systeminpr	overnents		Range in let	vels for Similar Tor	ography (5% exceedence, Figure 11)	-	Sr
									edicted Adjusted Depth (Frimpter), ft	-	Sh
		Soil Matrix Color - Moist		Coorse Fr	a anna a na ta 0/ la v	Test Hole Log					
Depth	Soil Horizon (Layer)		Soil Texture (USDA)		agments % by olume	Structure	Consistence		Redoximorphic Features (mottles)		Other
		(Cobbles &	-					
(inches)			(USDA)	Gravel	Stones			Depth	Color	Percent	(Roots, Etc.)
0 - 8"	А	_	Fine Sandy Loam		-	GR	FR		_	_	
8 - 23" (35)	B _{w1}	7.5YR 4/4	Fine Sandy Loam	2%	0%	SBK	FIP-FIH	-	-	-	Roots
23 - 40"	BC	7.5YR 3/4	Fine Sandy Loam	2%	2%	MA	FIP-FIH	-	-	-	incosts in the second
40 - 61"	C ₁	2.5Y 4/3	Fine Sandy Loam	25%	0%	SG	Loose (L)	-	-	-	Weeping groundwater
61 - 71"	C ₂	2.5Y 4/3	Fine Sandy Loam	0%	0%	MA	FIP-FIH	-	-	-	appears perched on C2
71"+	C_3	2.5Y 4/3	Fine Sandy Loam	10%	0%	MA	FIP-FIH	-	-	-	. P.F P
Geolo	ogic Setting and Topog	raphy			Textura	al and Structure				Photo	
Landform	Landscape Position	Parent Material	Texture (USDA)	Coarse	Fragments	Structure	Consistence	Redox %			
Drumlin	Summit (SU)	Dense Compact (Lodgement) Glacial Till	Coarse Sand	Gravel = 2mm to 3"	Cobble = 3" to 10"	Granular (GR)	Loose (L)	Few (F) <2%	Hanna R_2		
Till Ridge	Shoulder (SH)	Loose Ablation (Melt-out) Till	Sand		Stone = 10" to 25"	Angular Blocky (ABK)	Very Friable (VFR)	Common 2 to <20%	DL		
Ground Moraine	Backslope (BS)	Shallow to Bedrock Area	Fine Sand		Boulder = >25"	Subangular Blocky (SBK)	Friable (FR)	Many >20%	A		
Moraine (End / Recessional)	Footslope (FS)	Lacustrine	Loamy Sand			Platy (PL)	Firm (FI)				
Kettle	Toeslope (TS)	Ice-Contact Outwash	Sandy Loam			Structureless	Very Firm (VFI)		B _{w1}	3C	
Kame	Channel (CH)	Proglacial Outwash	Fine Sandy Loam			Single Grain (SG) Extremely Firm (EF)			C1	
Esker Outwash Plain Lacustrine Plain Floodplain		Alluvium Organic Deposits Eolian Deposits Marine Silts & Clays	Loam Silt Loam Sandy Clay Loam Silty Clay			Massive (MA)	Firm in Place, Friable	e in Hand (FIP-FIH)		C ₂	
Swamp		Human-Made/Transported Materials (Fill)	Clay								
Other		Other							Carles Care 11 11	-	
Comments:								-			
Tube Test Samples Taken fro Initial field reference measu			prrected accordingly								

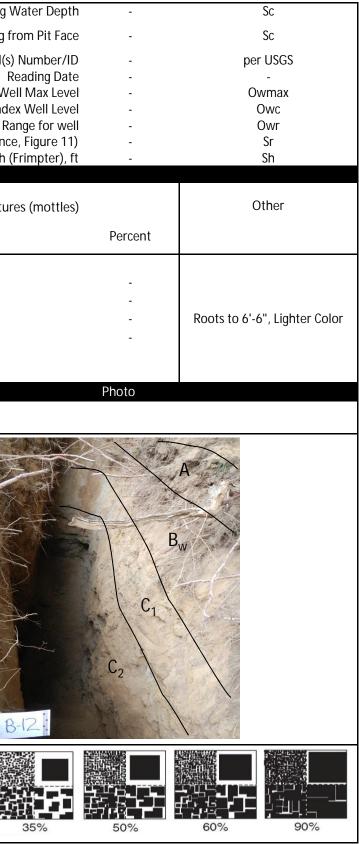
Test Hole ID:	B-3	(See map for location)					Groundwater Data		Standing Water Depth	-	Sc
Weather	Overcast, 50-60 deg.F						Sh = Sc - [(Sr/Owr)*(0	Owc-Owmax)]	or, Depth Weeping from Pit Face	138"	Sc
Date:	May 21, 2015	(Thursday)					Frimpter Adjustment		USGS Index Well(s) Number/ID	-	per USGS
Soil Evaluator		A Group, Inc. / Joseph Feder							Reading Date	-	-
Present	Joe Kmetz (Pomper	aug BOH), Ramona Goode (C	T DEEP), Pete (Harwir	iton Paving)	, weiti Associat	les			Index Well Max Level Index Well Level	-	Owmax Owc
Project:		Southbury - Wastewater Trea	atment and Dispersal S	System Impr	ovements				Max Range for well	-	Owr
Project / Number	05051.035						Range in leve		pography (5% exceedence, Figure 11)	-	Sr
						Test Hole Log		Pr	edicted Adjusted Depth (Frimpter), ft	-	Sh
		Soil Matrix Color - Moist			agments % by						
Depth	Soil Horizon (Layer)	(Munsell)	Soil Texture (USDA)	V	olume	Structure	Consistence		Redoximorphic Features (mottles)		Other
(inches)			(USDA)	Gravel	Cobbles & Stones			Depth	Color	Percent	(Roots, Etc.)
0.01						0.5					
0 - 8" 8 - 41"	AB	- 5YR 5/8	- Fine Sandy Loam	- 10%	- 2%	GR SBK	FR FR	-	-	-	Roots to 30"
40" - 55"	B _w C ₁	7.5YR 5/8	Loamy Sand	20%	2 <i>%</i> 15%	MA	FIP-FIH	-	-	-	
55 - 144"	C ₂	7.5YR 5/2	Fine Sandy Loam	25%	1%	MA	FIP-FIH	55"	10R 5/2 to 10R 4/6 (throughout C2)	10%	Ocassional Boulder
144" +	C ₃	7.5YR 6/2	Fine Sandy Loam	0%	0%	MA	FIP-FIH	-	-	-	
Geolo	gic Setting and Topog	raphy			Textura	al and Structure				Photo	
Landform	Landscape Position	Parent Material	Texture (USDA)	Coarse	e Fragments	Structure	Consistence	Redox %			
Drumlin	Summit (SU)	Dense Compact (Lodgement) Glacial Till	Coarse Sand	Gravel = 2mm to 3"	Cobble = 3" to 10"	Granular (GR)	Loose (L)	Few (F) <2%			
Till Ridge	Shoulder (SH)	Loose Ablation (Melt-out) Till	Sand		Stone = 10" to 25"	Angular Blocky (ABK)	Very Friable (VFR)	Common 2 to <20%			
Ground Moraine	Backslope (BS)	Shallow to Bedrock Area	Fine Sand		Boulder = >25"	Subangular Blocky (SBK)	Friable (FR)	Many >20%			
Moraine (End / Recessional)	Footslope (FS)	Lacustrine	Loamy Sand			Platy (PL)	Firm (FI)		1		
Kettle	Toeslope (TS)	Ice-Contact Outwash	Sandy Loam			Structureless	Very Firm (VFI)				
Kame	Channel (CH)	Proglacial Outwash	Fine Sandy Loam			Single Grain (SG) Extremely Firm (EF)		B		and the second s
Esker Outwash Plain Lacustrine Plain Floodplain		Organic Deposits Eolian Deposits Marine Silts & Clays	Loam Silt Loam Sandy Clay Loam Silty Clay			Massive (MA)	Firm in Place, Friable	in Hand (FIP-FIH)	C ₁ C ₂		
Swamp		Human-Made/Transported Materials (Fill)	Clay							C ₃	
Other		Other						1		1.20	
Comments: Tubo Tost Samples Takon fre	m C2 Lover at EL ("							-			
Tube Test Samples Taken fro	om uz layer at 5°-6°							2%	5% 15%	20%	25% 35%


Test Hole ID:	B-5	(See map for location)					Groundwater Data		Standing Water Depth	None	Sc
Weather	Sunny Clear mid 80's						Sh = Sc - [(Sr/Owr)*([Owc-Owmax)]	or, Depth Weeping from Pit Face	None	Sc
Date:	May 26, 2015	(Tuesday)					Frimpter Adjustment	t	USGS Index Well(s) Number/ID	-	per USGS
Soil Evaluator	Ũ	A Group, Inc. / Joseph Feder							Reading Date	-	-
Present	Ramona Goode (CT	DEEP), Pete (Harwinton Pav	ing), Welti Associates,	Brandon Ba	iros (BETA)				Index Well Max Level	-	Owmax
Project:	Lutheran Home of S	Southbury - Wastewater Trea	tment and Dispersal	System Impr	ovements				Index Well Level Max Range for well	-	Owc Owr
Project / Number	05051.035			ystern impr	overnerits		Range in lev	els for Similar Tor	bography (5% exceedence, Figure 11)	-	Sr
·							Ũ		edicted Adjusted Depth (Frimpter), ft	-	Sh
		Soil Matrix Color - Moist		Coorco Fr	amonto 0/ bu	Test Hole Log					
Depth	Soil Horizon (Layer)	(Munsell)	Soil Texture (USDA)		agments % by olume	Structure	Consistence		Redoximorphic Features (mottles)		Other
					Cobbles &				• • • •	_	
(inches)			(USDA)	Gravel	Stones			Depth	Color	Percent	(Roots, Etc.)
0 - 12"	А	7.5YR 4/2	Loam			GR	FR				
12 - 43"	B _w	7.5YR 4/2 7.5YR 4/4	Fine Loamy Sand	2%	- 2%	SBK	FR	-		-	Roots in C1 Layer
43 - 96"	C ₁	10YR 4/4	Sandy Loam	15%	15%	MA	FIP-FIH	_	_	_	Bony, Ocassional Boulder
96 - 144"	C ₂	10YR 4/3	Fine Loamy Sand	25%	0%	MA	FIP-FIH	-	-	-	Dong, Coussional Douldon
	2		, ,								
Geolo	gic Setting and Topog	raphy			Textura	al and Structure				Photo	
Landform	Landscape Position		Texture (USDA)	Coarse	Fragments	Structure	Consistence	Redox %		Thoto	
		Dense Compact		Gravel =	Cobble =					REIN	
Drumlin	Summit (SU)	(Lodgement) Glacial Till	Coarse Sand	2mm to 3"	3" to 10"	Granular (GR)	Loose (L)	Few (F) <2%		C-U	
Till Ridge	Shoulder (SH)	Loose Ablation (Melt-out) Till	Sand		Stone = 10" to 25"	Angular Blocky (ABK)	Very Friable (VFR)	Common 2 to <20%		A	
Ground Moraine	Backslope (BS)	Shallow to Bedrock Area	Fine Sand		Boulder = >25"	Subangular Blocky (SBK)	Friable (FR)	Many >20%		Bw	
Moraine (End / Recessional)	Footslope (FS)	Lacustrine	Loamy Sand			Platy (PL)	Firm (FI)			C	
Kettle	Toeslope (TS)	Ice-Contact Outwash	Sandy Loam			Structureless	Very Firm (VFI)				
Kame	Channel (CH)	Proglacial Outwash	Fine Sandy Loam			Single Grain (SG)	Extremely Firm (EF)		COS STA		CARLE VIE
Esker		Alluvium	Loam			Massive (MA)	Firm in Place, Friable	e in Hand (FIP-FIH)			Carl Part
Outwash Plain			Silt Loam					· · ·		E - N E T	
Lacustrine Plain			Sandy Clay Loam							C ₂	125 122. 3
Floodplain		Marine Silts & Clays	Silty Clay								
Swamp		Human-Made/Transported Materials (Fill)	Clay								
Other		Other									
Comments:											
C1 Layer very bony, 15% cob											
Tube Test Samples Taken fro											
Note: Excavator ruptured O- Soil Profile similar to B-6, B-7		, down for repair 9 - Tuam									
	1.171.1										

Test Hole ID:	B-6	(See map for location)					Groundwater Data		Standing Water Depth	n None	Sc
Weather	Sunny Clear mid 80's						Sh = Sc - [(Sr/Owr)*((Owc-Owmax)]	or, Depth Weeping from Pit Face	e None	Sc
Date:	May 26, 2015	(Tuesday)					Frimpter Adjustmen	t	USGS Index Well(s) Number/ID) -	per USGS
Soil Evaluator		A Group, Inc. / Joseph Feder							Reading Date		-
Present	Ramona Goode (C1	DEEP), Pete (Harwinton Pav	ing), Welti Associates	, Brandon Ba	iros (Beta)				Index Well Max Leve Index Well Leve		Owmax Owc
Project:	Lutheran Home of S	Southbury - Wastewater Trea	atment and Dispersal	System Impro	ovements				Max Range for wel		Owr
Project / Number	05051.035	5	·	5			Range in lev		ography (5% exceedence, Figure 11)) -	Sr
						Test Hole Log		Pre	edicted Adjusted Depth (Frimpter), f	t -	Sh
		Soil Matrix Color - Moist		Coarse Fr	agments % by	Test Hole Log					
Depth	Soil Horizon (Layer)		Soil Texture (USDA)		olume	Structure	Consistence		Redoximorphic Features (mottles))	Other
(inches)			(USDA)	Gravel	Cobbles & Stones			Depth	Color	Percent	(Roots, Etc.)
0 - 6"	А	_	Loam	-	-	GR	FR	_		_	
6 - 21"	B _w	7.5YR 2.5/3	Fine Sandy Loam	3%	2%	SBK	FIP-FIH	None	-	-	Roots throughout
21 - 48"	C ₁	2.5Y 4/4	Sandy Loam	15%	15%	SG	Loose	None	-	-	Ocassional Boulder
48 - 144" +	C ₂	2.5Y 4/4	Fine Sandy Loam	25%	0%	Massive	FIP-FIH	None	-	-	
Geolo	ogic Setting and Topog	Iraphy			Textura	al and Structure				Photo	
Landform	Landscape Position	Parent Material	Texture (USDA)	Coarse	Fragments	Structure	Consistence	Redox %			
Drumlin	Summit (SU)	Dense Compact (Lodgement) Glacial Till	Coarse Sand	Gravel = 2mm to 3"	Cobble = 3" to 10"	Granular (GR)	Loose (L)	Few (F) <2%	8-6	A	
Till Ridge	Shoulder (SH)	Loose Ablation (Melt-out) Till	Sand	211111 (0 5	Stone = 10" to 25"	Angular Blocky (ABK)	Very Friable (VFR)	Common 2 to <20%	00	Bw	
Ground Moraine	Backslope (BS)	Shallow to Bedrock Area	Fine Sand		Boulder = >25"	Subangular Blocky (SBK)	Friable (FR)	Many >20%		C ₁	
Moraine (End / Recessional)	Footslope (FS)	Lacustrine	Loamy Sand			Platy (PL)	Firm (FI)			()	
Kettle	Toeslope (TS)	Ice-Contact Outwash	Sandy Loam			Structureless	Very Firm (VFI)			ALAX	
Kame	Channel (CH)	Proglacial Outwash	Fine Sandy Loam			Single Grain (SG)) Extremely Firm (EF)			Carl	
Esker Outwash Plain Lacustrine Plain Floodplain		Alluvium Organic Deposits Eolian Deposits Marine Silts & Clays	Loam Silt Loam Sandy Clay Loam Silty Clay			Massive (MA)	Firm in Place, Friable	e in Hand (FIP-FIH)			
Swamp		Human-Made/Transported Materials (Fill)	Clay						3.8		
Other		Other									
Comments:											
No tube samples collected Soil Profile similar to B-5, B-7	7 B-8							-			
	ט-ט _ד י							· .			
								2%	5% 15%	20%	25% 35%

Test Hole ID:	B-7	(See map for location)					Groundwater Data		Standing Water Depth	None	Sc
Weather	Sunny Clear mid 80's						Sh = Sc - [(Sr/Owr)*	(Owc-Owmax)]	or, Depth Weeping from Pit Face	None	Sc
Date:	00 s May 26, 2015	(Tuesday)					Frimpter Adjustmen	t	USGS Index Well(s) Number/ID	-	per USGS
Soil Evaluator		A Group, Inc. / Joseph Feder							Reading Date	-	-
Present	Ramona Goode (CT	DEEP), Pete (Harwinton Pav	ing), Welti Associates,	, Brandon Bai	ros (BETA)				Index Well Max Level	-	Owmax
Project:	Lutheran Home of S	outhbury - Wastewater Trea	atment and Dispersal (System Impro	wements				Index Well Level Max Range for well	-	Owc Owr
Project / Number	05051.035			system impre	DVernerits		Range in le	vels for Similar Tor	bography (5% exceedence, Figure 11)	-	Sr
									edicted Adjusted Depth (Frimpter), ft	-	Sh
		Soil Matrix Color - Moist		Coarso Er	agments % by	Test Hole Log					
Depth	Soil Horizon (Layer)	(Munsell)	Soil Texture (USDA)		plume	Structure	Consistence		Redoximorphic Features (mottles)		Other
(inches)			(USDA)	Gravel	Cobbles & Stones			Depth	Color	Percent	(Roots, Etc.)
0 - 9"	А	_	Loam	-	_	GR	FR	None	_	-	
9 -54"	B _{w1}	7.5YR 2.5/3	Fine Sandy Loam	5%	2%	SBK	FIP-FIH	None	_	-	Roots througout to 60"
54 - 120"	BC	2.5Y 4/4	Fine to Med. Sand	15 - 20%	5%	MA	FIP-FIH	None	-	-	Ocassional Boulder
120 - 156"	2C	10YR 4/3	Fine Sandy Loam	25%	0%	MA	FIP-FIH	None	-	-	Possible Loess Layer
Geolo	gic Setting and Topog	raphy			Textura	I and Structure				Photo	
Landform	Landscape Position	Parent Material	Texture (USDA)	Coarse	Fragments	Structure	Consistence	Redox %			
Drumlin	Summit (SU)	Dense Compact (Lodgement) Glacial Till	Coarse Sand	Gravel = 2mm to 3"	Cobble = 3" to 10"	Granular (GR)	Loose (L)	Few (F) <2%			
Till Ridge	Shoulder (SH)	Loose Ablation (Melt-out) Till	Sand	211111100	Stone = 10" to 25"	Angular Blocky (ABK)	Very Friable (VFR)	Common 2 to <20%		Vie Vie	
Ground Moraine	Backslope (BS)	Shallow to Bedrock Area	Fine Sand		Boulder = >25"	Subangular Blocky (SBK)	Friable (FR)	Many >20%	3		No. of Concession, No. of Conces
Moraine (End / Recessional)	Footslope (FS)	Lacustrine	Loamy Sand			Platy (PL)	Firm (FI)				
Kettle	Toeslope (TS)	Ice-Contact Outwash	Sandy Loam			Structureless	Very Firm (VFI)				A
Kame	Channel (CH)	Proglacial Outwash	Fine Sandy Loam			Single Grain (SG) Extremely Firm (EF)		the free and		
Esker Outwash Plain Lacustrine Plain Floodplain		Eolian Deposits Marine Silts & Clays	Loam Silt Loam Sandy Clay Loam Silty Clay			Massive (MA)	Firm in Place, Friable	e in Hand (FIP-FIH)	HA HA	20	BC BW1
Swamp		Human-Made/Transported Materials (Fill)	Clay						B-7	56	and the second sec
Other		Other								12/18/19/2	
Comments:								-			
No tube samples collected Soil Profile similar to B-5, B-6	R Q							- · · · · •			
SULLET OTHE SITURAL LO B-5, B-C	ס-0 ו										
1											

Test Hole ID:	B-8	(See map for location)					Groundwater Data		Standing Water Depth	None	Sc
Weather	Sunny Clear mid						Sh = Sc - [(Sr/Owr)*((Owc-Owmax)]	or, Depth Weeping from Pit Face	None	Sc
Date:	80's May 26, 2015	(Tuesday)					Frimpter Adjustmen	t	USGS Index Well(s) Number/ID	-	per USGS
Soil Evaluator		A Group, Inc. / Joseph Feder	ico - BETA Group, Inc,				······	-	Reading Date	-	-
Present	Ramona Goode (CT	DEEP), Pete (Harwinton Pav	ing), Welti Associates,	Brandon Ba	iros (BETA)				Index Well Max Level	-	Owmax
Drojaat	Luthoran Homo of S	outhbury - Wastewater Trea	tmont and Disporcal (Suctor Impr	ovomonto				Index Well Level	-	Owc Owr
Project: Project / Number	05051.035	outinduly - wastewater fied		bystern impr	overnents		Range in lev	vels for Similar Tor	Max Range for well bography (5% exceedence, Figure 11)	-	Sr
									edicted Adjusted Depth (Frimpter), ft	-	Sh
		Soil Matrix Color - Moist		Cooroo Fr	agencente (/ by	Test Hole Log					
Depth	Soil Horizon (Layer)		Soil Texture (USDA)		agments % by olume	Structure	Consistence		Redoximorphic Features (mottles)		Other
(inches)			(USDA)	Gravel	Cobbles & Stones			Depth	Color	Percent	(Roots, Etc.)
0 - 8"	А	-	Loam	_	-	GR	FR	_	<u>.</u>	-	
8 - 36"	B _{w1}	7.5YR 4/4	Fine Sandy Loam	2%	2%	SBK	FIP-FIH	None	-	-	
36 - 68"	BC	10YR 4/6	Fine Sandy Loam	2%	5%	MA	FIP-FIH	None	-	-	Roots into BC Layer
68 - 120"	C ₁	10YR 4/4	Fine to Med. Sand	25%	5%	MA	FIP-FIH	None	-	-	Ocassional Boulder
120 - 144"	C ₂	10YR 4/3	Fine Sandy Loam	0%	0%	MA	FIP-FIH	None	-	-	
Geolog	gic Setting and Topog	raphy			Textura	l and Structure				Photo	
Landform	Landscape Position	Parent Material	Texture (USDA)	Coarse	Fragments	Structure	Consistence	Redox %			
Drumlin	Summit (SU)	Dense Compact (Lodgement) Glacial Till	Coarse Sand	Gravel = 2mm to 3"	Cobble = 3" to 10"	Granular (GR)	Loose (L)	Few (F) <2%			
Till Ridge	Shoulder (SH)	Loose Ablation (Melt-out) Till	Sand	211111 10 5	Stone = 10" to 25"	Angular Blocky (ABK)	Very Friable (VFR)	Common 2 to <20%	A		
Ground Moraine	Backslope (BS)	Shallow to Bedrock Area	Fine Sand		Boulder = >25"	Subangular Blocky (SBK)	Friable (FR)	Many >20%	B	7	
Moraine (End / Recessional)	Footslope (FS)	Lacustrine	Loamy Sand			Platy (PL)	Firm (FI)		W1		
Kettle	Toeslope (TS)	Ice-Contact Outwash	Sandy Loam			Structureless	Very Firm (VFI)		- DC		
Kame	Channel (CH)	Proglacial Outwash	Fine Sandy Loam			Single Grain (SG) Extremely Firm (EF)		BU	10 - 1 M	
Esker Outwash Plain Lacustrine Plain Floodplain		Organic Deposits Eolian Deposits Marine Silts & Clays	Loam Silt Loam Sandy Clay Loam Silty Clay			Massive (MA)	Firm in Place, Friable	e in Hand (FIP-FIH)	C ₁	C	
Swamp		Human-Made/Transported Materials (Fill)	Clay								
Other		Other							and the second	A DET CONTRACTOR	· · · · ·
Comments:								••••			
Boulder at 60" on southeast											
ESHGW at 120", top of C2 La C1 layer very bony, roots thr	2										
No tube samples collected											
Soil Profile similar to B-5, B-6	б, В-7							2%	5% 15%	20%	25% 35%


Test Hole ID:	B-9	(See map for location)					Groundwater Data		Standing V
Weather	Sunny Clear mid						Sh = Sc - [(Sr/Owr)*(0	Dwc-Owmax)]	or, Depth Weeping fr
Date:	80's May 26, 2015	(Tuesday)					Frimpter Adjustment		USGS Index Well(s)
Soil Evaluator	Robert Baglini - BET	A Group, Inc. / Joseph Feder							Re
Present	Ramona Goode (CT	DEEP), Pete (Harwinton Pav	ing), Welti Associates,	Brandon Bai	ros (BETA)				Index We
Project:	Lutheran Home of S	outhbury - Wastewater Trea	atment and Dispersal S	System Impro	ovements				Inde: Max Ra
Project / Number	05051.035			ystem impre			Range in leve	els for Similar Top	ography (5% exceedence
						Test Hale Lee		Pre	edicted Adjusted Depth (F
		Soil Matrix Color - Moist		Coarse Fra	agments % by	Test Hole Log			
Depth	Soil Horizon (Layer)	(Munsell)	Soil Texture (USDA)		olume	Structure	Consistence		Redoximorphic Feature
(inches)			(USDA)	Gravel	Cobbles &			Depth	Color
(menes)			(USDA)	Graver	Stones			Depth	60101
0 - 6"	А	7.5YR 4/2	Fine Sandy Loam		_	GR	FR		
6 - 33"	B _{w1}	10YR 4/3	Fine Sandy Loam	5%	-	SBK	FIP-FIH	None	-
33 - 72"	BC	10YR 4/4	F/Med. Sandy Loam	5%	-	Massive	FIP-FIH	None	-
72 - 88"	C ₁	10YR 5/2	F/Med. Sandy Loam	25%	15%	SG	Loose	None	-
88" +	C ₂	10YR 6/2	Fine Sandy Loam	1%	0%	Massive	FIP-FIH	None	-
Coolor	gic Setting and Topogi	ranhy			Toytura	al and Structure			
				0					
Landform	Landscape Position		Texture (USDA)		Fragments	Structure	Consistence	Redox %	
Drumlin	Summit (SU)	Dense Compact (Lodgement) Glacial Till	Coarse Sand	Gravel = 2mm to 3"	Cobble = 3" to 10"	Granular (GR)	Loose (L)	Few (F) <2%	
Till Ridge	Shoulder (SH)	Loose Ablation (Melt-out) Till	Sand		Stone = 10" to 25"	Angular Blocky (ABK)	Very Friable (VFR)	Common 2 to <20%	
Ground Moraine	Backslope (BS)	Shallow to Bedrock Area	Fine Sand		Boulder = >25"	Subangular Blocky (SBK)	Friable (FR)	Many >20%	
Moraine (End / Recessional)	Footslope (FS)	Lacustrine	Loamy Sand			Platy (PL)	Firm (FI)		
Kettle	Toeslope (TS)	Ice-Contact Outwash	Sandy Loam			Structureless	Very Firm (VFI)		15 *
Kame	Channel (CH)	Proglacial Outwash	Fine Sandy Loam			Single Grain (SG)	Extremely Firm (EF)		
Esker Outwash Plain Lacustrine Plain Floodplain		Alluvium Organic Deposits Eolian Deposits Marine Silts & Clays	Loam Silt Loam Sandy Clay Loam Silty Clay			Massive (MA)	Firm in Place, Friable	in Hand (FIP-FIH)	
Swamp		Human-Made/Transported Materials (Fill)	Clay						
Other		Other							here
Comments:									
Tube Test Samples Taken from ESHGW estimated at 72", top		d C2 Layer at 90"							
								2%	5%

Present Ramona Go	15 (Tuesday) lini - BETA Group, Inc. / Joseph F bode (CT DEEP), Pete (Harwinton ome of Southbury - Wastewater (Munsell) TM 7.5YR 3/3 10YR 4/4 10YR 6/2 d Topography Position Parent Material	Paving) Treatment and Dispersal S Soil Texture (USDA) (USDA) F. Sandy Loam F. Sandy Loam Texture (USDA)	System Impr Coarse Fr V Gravel	ragments % by /olume Cobbles & Stones - - 5%	Test Hole Log Structure GR SBK Massive	Sh = Sc - [(Sr/Owr)*((Frimpter Adjustment Range in lev Consistence FR FR FIR Firm	els for Similar Topo Prec Depth - - -	or, Depth Weeping from Pit Face USGS Index Well(s) Number/ID Reading Date Index Well Max Level Index Well Level Max Range for well ography (5% exceedence, Figure 11) dicted Adjusted Depth (Frimpter), ft Redoximorphic Features (mottles) Color - - -		Sc per USGS - Owmax Owc Owr Sr Sh Other Roots to 84"
Date:June 23, 20Soil EvaluatorRobert BagPresentRamona GoProject:Lutheran HProject / Number05051.035DepthSoil Horizon(inches)A / H31 - 41"Bb41 - 120"C1Geologic Setting anLandformLandscapeDrumlinSummit (SLTill RidgeShoulder (SGround MoraineBackslope (TMoraine (End / Recessional)Footslope (T	 Ini - BETA Group, Inc. / Joseph F bode (CT DEEP), Pete (Harwinton Dome of Southbury - Wastewater Soil Matrix Color - Mo (Munsell) TM 7.5YR 3/3 10YR 4/4 10YR 6/2 d Topography Position Parent Material 	Paving) Treatment and Dispersal S Soil Texture (USDA) (USDA) F. Sandy Loam F. Sandy Loam Texture (USDA)	System Impr Coarse Fr V Gravel	ragments % by /olume Cobbles & Stones - - 5%	Structure GR SBK Massive	Range in lev Consistence FR FR FR Firm	Pred Depth - - -	Reading Date Index Well Max Level Index Well Level Max Range for well ography (5% exceedence, Figure 11) dicted Adjusted Depth (Frimpter), ft Redoximorphic Features (mottles)	Percent	Owmax Owc Owr Sr Sh Other
PresentRamona GaProject:Lutheran HProject / Number05051.035DepthSoil Horizo(inches)Soil Horizo0 - 31"A / H31 - 41"Bb41 - 120"C1Geologic Setting anLandformLandscapeDrumlinSummit (SLTill RidgeShoulder (SGround MoraineBackslope (TMoraine (End / Recessional)Footslope (TKettleToeslope (T	lini - BETA Group, Inc. / Joseph F loode (CT DEEP), Pete (Harwinton ome of Southbury - Wastewater (Layer) Soil Matrix Color - Mo (Munsell) TM 7.5YR 3/3 10YR 4/4 10YR 6/2 d Topography Position Parent Material	Paving) Treatment and Dispersal S Soil Texture (USDA) (USDA) F. Sandy Loam F. Sandy Loam Texture (USDA)	System Impr Coarse Fr V Gravel	ragments % by /olume Cobbles & Stones - - 5%	Structure GR SBK Massive	Range in lev Consistence FR FR FR Firm	Pred Depth - - -	Index Well Max Level Index Well Level Max Range for well ography (5% exceedence, Figure 11) dicted Adjusted Depth (Frimpter), ft Redoximorphic Features (mottles)	- - - - - Percent - - -	Owmax Owc Owr Sr Sh Other
Project: Project / NumberLutheran H 05051.035Depth (inches)Soil Horizon (inches)0 - 31" 31 - 41" 41 - 120"A / H Bb C1Geologic Setting and LandformC1LandformLandscapeDrumlinSummit (SLTill RidgeShoulder (SLGround MoraineBackslope (SLMoraine (End / Recessional)Footslope (TOKettleToeslope (TO	Soil Matrix Color - Mo (Layer) Soil Matrix Color - Mo (Munsell) M 7.5YR 3/3 10YR 4/4 10YR 6/2 d Topography Position Parent Material	Treatment and Dispersal S ist Soil Texture (USDA) (USDA) - F. Sandy Loam F. Sandy Loam F. Sandy Loam	Coarse Fr V Gravel - - 5%	ragments % by /olume Cobbles & Stones - - 5%	Structure GR SBK Massive	Consistence FR FR FIR Firm	Pred Depth - - -	Index Well Level Max Range for well ography (5% exceedence, Figure 11) dicted Adjusted Depth (Frimpter), ft Redoximorphic Features (mottles)	- - - Percent - - -	Owc Owr Sr Sh Other
Project / Number05051.035Depth (inches)Soil Horizon (inches)0 - 31" 31 - 41" 41 - 120"A / H Bb C1Geologic Setting and LandscapeLandformLandscapeDrumlinSummit (SLTill RidgeShoulder (S Backslope (S Toeslope (T Toeslope (TMoraine (End / Recessional)Footslope (T Toeslope (T	Soil Matrix Color - Mo (Munsell) TM 7.5YR 3/3 10YR 4/4 10YR 6/2 d Topography Position Parent Material	ist Soil Texture (USDA) (USDA) F. Sandy Loam F. Sandy Loam Texture (USDA)	Coarse Fr V Gravel - - 5%	ragments % by /olume Cobbles & Stones - - 5%	Structure GR SBK Massive	Consistence FR FR FIR Firm	Pred Depth - - -	Max Range for well ography (5% exceedence, Figure 11) dicted Adjusted Depth (Frimpter), ft Redoximorphic Features (mottles)	- - Percent - - -	Owr Sr Sh Other
Project / Number05051.035Depth (inches)Soil Horizon (inches)0 - 31" 31 - 41" 41 - 120"A / H Bb C1Geologic Setting ar C1LandformLandscapeDrumlinSummit (SLTill RidgeShoulder (S Ground MoraineMoraine (End / Recessional)Footslope (T Toeslope (T	Soil Matrix Color - Mo (Munsell) TM 7.5YR 3/3 10YR 4/4 10YR 6/2 d Topography Position Parent Material	ist Soil Texture (USDA) (USDA) F. Sandy Loam F. Sandy Loam Texture (USDA)	Coarse Fr V Gravel - - 5%	ragments % by /olume Cobbles & Stones - - 5%	Structure GR SBK Massive	Consistence FR FR FIR Firm	Pred Depth - - -	ography (5% exceedence, Figure 11) dicted Adjusted Depth (Frimpter), ft Redoximorphic Features (mottles)	- - Percent - - -	Sr Sh Other
(inches)0 - 31"A / H31 - 41"Bb41 - 120"C1C2C1C3C1C4C1C5C1C5C1C6C1C7C1 <td< td=""><td>Market (Munsell) (Munsell) M 7.5YR 3/3 10YR 4/4 10YR 6/2 d Topography Position Parent Material</td><td>Soil Texture (USDA) (USDA) - F. Sandy Loam F. Sandy Loam Texture (USDA)</td><td>Gravel</td><td>/olume Cobbles & Stones - - 5% Textura</td><td>Structure GR SBK Massive</td><td>FR FR Firm</td><td>Depth - - -</td><td>Redoximorphic Features (mottles)</td><td>Percent - -</td><td>Other</td></td<>	Market (Munsell) (Munsell) M 7.5YR 3/3 10YR 4/4 10YR 6/2 d Topography Position Parent Material	Soil Texture (USDA) (USDA) - F. Sandy Loam F. Sandy Loam Texture (USDA)	Gravel	/olume Cobbles & Stones - - 5% Textura	Structure GR SBK Massive	FR FR Firm	Depth - - -	Redoximorphic Features (mottles)	Percent - -	Other
(inches)0 - 31"A / H31 - 41"Bb41 - 120"C1C2C1C3C1C4C1C5C1C5C1C6C1C7C1 <td< td=""><td>Market (Munsell) (Munsell) M 7.5YR 3/3 10YR 4/4 10YR 6/2 d Topography Position Parent Material</td><td>Soil Texture (USDA) (USDA) - F. Sandy Loam F. Sandy Loam Texture (USDA)</td><td>Gravel</td><td>/olume Cobbles & Stones - - 5% Textura</td><td>Structure GR SBK Massive</td><td>FR FR Firm</td><td></td><td>- -</td><td>Percent - -</td><td></td></td<>	Market (Munsell) (Munsell) M 7.5YR 3/3 10YR 4/4 10YR 6/2 d Topography Position Parent Material	Soil Texture (USDA) (USDA) - F. Sandy Loam F. Sandy Loam Texture (USDA)	Gravel	/olume Cobbles & Stones - - 5% Textura	Structure GR SBK Massive	FR FR Firm		- -	Percent - -	
(inches)0 - 31"A / H31 - 41"Bb41 - 120"C1Geologic Setting anLandformLandscapeDrumlinSummit (SLTill RidgeShoulder (SGround MoraineBackslopeMoraine (End / Recessional)Footslope (TKettleToeslope (T	TM 7.5YR 3/3 10YR 4/4 10YR 6/2 d Topography Position Parent Material	(USDA) F. Sandy Loam F. Sandy Loam Texture (USDA)	Gravel - - 5%	Cobbles & Stones - - 5%	GR SBK Massive al and Structure	FR FR Firm		- -	Percent - -	
0 - 31"A / H31 - 41"Bb41 - 120"C1Geologic Setting anLandformLandscapeDrumlinSummit (SLTill RidgeShoulder (SGround MoraineBackslope (SMoraine (End / Recessional)Footslope (TKettleToeslope (T	10YR 4/4 10YR 6/2 d Topography Position Parent Material	F. Sandy Loam F. Sandy Loam Texture (USDA)	- - 5%	Stones - - 5% Textura	SBK Massive al and Structure	FR Firm		Color - - -	- - -	Roots to 84"
31 - 41"Bb41 - 120"C1Geologic Setting anLandformLandscapeDrumlinSummit (SLTill RidgeShoulder (SGround MoraineBackslope (SMoraine (End / Recessional)Footslope (TKettleToeslope (T	10YR 4/4 10YR 6/2 d Topography Position Parent Material	F. Sandy Loam Texture (USDA)	5%	- 5% Textura	SBK Massive al and Structure	FR Firm		- - -	- - - Photo	Roots to 84"
31 - 41"Bb41 - 120"C1Geologic Setting anLandformLandscapeDrumlinSummit (SLTill RidgeShoulder (SGround MoraineBackslope (SMoraine (End / Recessional)Footslope (TKettleToeslope (T	10YR 4/4 10YR 6/2 d Topography Position Parent Material	F. Sandy Loam Texture (USDA)	5%	- 5% Textura	SBK Massive al and Structure	FR Firm	-	-	- - Photo	Roots to 84"
41 - 120"C1Geologic Setting anLandformLandscapeDrumlinSummit (SLTill RidgeShoulder (SGround MoraineBackslopeMoraine (End / Recessional)Footslope (TKettleToeslope (T	d Topography Position Parent Material	F. Sandy Loam Texture (USDA)		Textura	Massive al and Structure	Firm	-	-	- Photo	Roots to 84"
LandformLandscapeDrumlinSummit (SLTill RidgeShoulder (SGround MoraineBackslopeMoraine (End / Recessional)Footslope (TKettleToeslope (T	Position Parent Material		Coarse			Consistanco			Photo	
LandformLandscapeDrumlinSummit (SLTill RidgeShoulder (SGround MoraineBackslopeMoraine (End / Recessional)Footslope (TKettleToeslope (T	Position Parent Material		Coarse			Consistonco			Photo	
LandformLandscapeDrumlinSummit (SLTill RidgeShoulder (SGround MoraineBackslopeMoraine (End / Recessional)Footslope (TKettleToeslope (T	Position Parent Material		Coarse			Consistonco			Photo	
DrumlinSummit (SLTill RidgeShoulder (SGround MoraineBackslopeMoraine (End / Recessional)Footslope (TKettleToeslope (T	Dense Compact		Coarse	e Fragments	Structure	Consistanco				
Till RidgeShoulder (SGround MoraineBackslopeMoraine (End / Recessional)Footslope (KettleToeslope (T	Dense Compact					CONSISTENCE	Redox %			
Ground MoraineBackslopeMoraine (End / Recessional)Footslope (Toeslope (T Toeslope (T	(Lodgement) Glacial Till	Coarse Sand	Gravel = 2mm to 3"	Cobble = 3" to 10"	Granular (GR)	Loose (L)	Few (F) <2%			
Moraine (End / Recessional) Footslope (Kettle Toeslope (T	Loose Ablation (Malt e			Stone = 10" to 25"	Angular Blocky (ABK)	Very Friable (VFR)	Common 2 to <20%	8-10		
Kettle Toeslope (T	BS) Shallow to Bedrock Are	a Fine Sand		Boulder = >25"	Subangular Blocky (SBK)	Friable (FR)	Many >20%	1 Alexandress of the second se	A	
	FS) Lacustrine	Loamy Sand			Platy (PL)	Firm (FI)				the sa
Kame Channel (Cl	S) Ice-Contact Outwash	Sandy Loam			Structureless	Very Firm (VFI)		and the second s		Me Y
	l) Proglacial Outwash	Fine Sandy Loam			Single Grain (SG)	Extremely Firm (EF)			Bw	
Esker Outwash Plain Lacustrine Plain	Alluvium Organic Deposits Eolian Deposits Marine Silts & Clays	Loam Silt Loam Sandy Clay Loam Silty Clay			Massive (MA)				C1	
Floodplain Swamp	Human-Made/Transpor	Silty Clay Ted Clay								
	Waterials (Fill)	,								A CONTRACTOR
Other Comments:	Other			· · · · · ·					E-300 ANNI 125	
Tube Test sample obtained at 56" in C1 La				_						
Pit is located adjacent to SWAS / Drivewa	ver	7								
					2%	5% 15%	20%	25% 35%	50%	60% 90%

Test Hole ID:	B-11	(See map for location)					Groundwater Data		Standing Water Depth	-	Sc
Weather	Sunny mid-90's,						Sh = Sc - [(Sr/Owr)*(Owc-Owmax)]	or, Depth Weeping from Pit Face	-	Sc
Date:	humid June 23, 2015	(Tuesday)					Frimpter Adjustment		USGS Index Well(s) Number/ID	-	per USGS
Soil Evaluator	Robert Baglini - BET	A Group, Inc. / Joseph Fede							Reading Date	-	· -
Present	Ramona Goode (CT	DEEP), Pete (Harwinton Pay	ving)						Index Well Max Level	-	Owmax
Project:	Lutheran Home of S	Southbury - Wastewater Tre	atment and Dispersal	System Impr	ovements				Index Well Level Max Range for well	-	Owc Owr
Project / Number	05051.035			by stern impr	overnents		Range in lev	els for Similar Top	pography (5% exceedence, Figure 11)	-	Sr
-								Pr	edicted Adjusted Depth (Frimpter), ft	-	Sh
		Soil Matrix Color - Moist		Coarse Fr	agments % by	Test Hole Log					
Depth	Soil Horizon (Layer)		Soil Texture (USDA)		olume	Structure	Consistence		Redoximorphic Features (mottles)		Other
(inches)			(USDA)	Gravel	Cobbles & Stones			Depth	Color	Percent	
0 - 144"	A / HTM	7.5YR 3/3									Roots, Cut branches/tree
0 - 144	A7 HIM	7.518 5/5	-	-	-	-	-	-	-	-	Roots, cut branches/tree
Geolog	gic Setting and Topog	raphy			Textur	al and Structure				Photo	
Landform	Landscape Position	Parent Material	Texture (USDA)	Coarse	Fragments	Structure	Consistence	Redox %			
Drumlin	Summit (SU)	Dense Compact (Lodgement) Glacial Till	Coarse Sand	Gravel = 2mm to 3"	Cobble = 3" to 10"	Granular (GR)	Loose (L)	Few (F) <2%			
Till Ridge	Shoulder (SH)	Loose Ablation (Melt-out)	Sand	211111 to 5	Stone = 10" to 25"	Angular Blocky (ABK)	Very Friable (VFR)	Common 2 to <20%			
Ground Moraine	Backslope (BS)	Shallow to Bedrock Area	Fine Sand		Boulder = >25"	Subangular Blocky (SBK)	Friable (FR)	Many >20%	B-11		
Moraine (End / Recessional)	Footslope (FS)	Lacustrine	Loamy Sand			Platy (PL)	Firm (FI)		Fill	/ HTM	
Kettle	Toeslope (TS)	Ice-Contact Outwash	Sandy Loam			Structureless	Very Firm (VFI)			TITIVE	The second second
Kame	Channel (CH)	Proglacial Outwash	Fine Sandy Loam			Single Grain (SG)) Extremely Firm (EF)		-h o	W St	1×3
Esker		Alluvium	Loam			Massive (MA)					
Outwash Plain		Organic Deposits	Silt Loam								A CONTRACT
Lacustrine Plain		Eolian Deposits	Sandy Clay Loam						The second	10 10 ACV	
Floodplain		Marine Silts & Clays Human-	Silty Clay								1 and a state
Swamp		Made/Transported Materials (Fill)	Clay								S SE
Other		Other]								State of the state
Comments:		11 £1)									
Water / Sewage weeping, the Sewage Odor	en standing at 132" (1	i i -rt)			-						
						2%	5% 15%	20%	25% 35%	50%	60% 90%
l					14		anna an an an ann an Array Array	20,0			

Test Hole ID:	B-12	(See map for location)					Groundwater Data		Standing V
Weather	Sunny mid-90's, humid						Sh = Sc - [(Sr/Owr)*(Owc-Owmax)]	or, Depth Weeping fi
Date:	June 23, 2015	(Tuesday)					Frimpter Adjustment	t	USGS Index Well(s)
Soil Evaluator		A Group, Inc. / Joseph Feder							R
Present	Ramona Goode (CI	DEEP), Pete (Harwinton Pav	ing)						Index We Inde
Project:		outhbury - Wastewater Trea	atment and Dispersal S	System Impro	ovements				Max Ra
Project / Number	05051.035						Range in lev		oography (5% exceedence edicted Adjusted Depth (F
						Test Hole Log			culeted Adjusted Depth (i
Depth	Soil Horizon (Layer)	Soil Matrix Color - Moist (Munsell)	Soil Texture (USDA)		agments % by olume	Structure	Consistence		Dodovimorphic Footure
	Soli Honzon (Layer)	(Muliseli)			Cobbles &	Structure	CONSISTENCE		Redoximorphic Feature
(inches)			(USDA)	Gravel	Stones			Depth	Color
0 - 8"	А	7.5YR 3/3	-	-	-	GR	FR	_	-
8 - 38"	B _w	7.5YR 4/6	F. Sandy Loam	-	-	SBK	FR	-	-
38 - 62"	C ₁	7.5YR 5/2	F. Sandy Loam	10%	5%	Massive	V. Firm (VFI)	-	-
62 - 120"	C ₂	7.5YR 4/3	F. Sandy Loam	5%	5%	Massive	Firm (FI)	-	-
Geolog	gic Setting and Topogi	raphy			Textura	al and Structure			
Landform	Landscape Position	Parent Material	Texture (USDA)	Coarse	Fragments	Structure	Consistence	Redox %	
Drumlin	Summit (SU)	Dense Compact	Coarse Sand	Gravel =	Cobble = 3" to 10"	Granular (GR)	Loose (L)	Few (F) <2%	
Till Ridge	Shoulder (SH)	(Lodgement) Glacial Till Loose Ablation (Melt-out)	Sand	2mm to 3"	Stone =	Angular Blocky	Very Friable (VFR)	Common 2 to	
Thi Kidge	Shoulder (SH)	Till	Sanu		10" to 25" Doubler	(ABK)		<20%	
Ground Moraine	Backslope (BS)	Shallow to Bedrock Area	Fine Sand		Boulder = >25"	Subangular Blocky (SBK)	Friable (FR)	Many >20%	
Moraine (End / Recessional)	Footslope (FS)	Lacustrine	Loamy Sand			Platy (PL)	Firm (FI)		
Kettle	Toeslope (TS)	Ice-Contact Outwash	Sandy Loam			Structureless	Very Firm (VFI)		
Kame	Channel (CH)	Proglacial Outwash	Fine Sandy Loam			Single Grain (SG)	Extremely Firm (EF)		
Esker		Alluvium	Loam			Massive (MA)			
Outwash Plain		Organic Deposits	Silt Loam						
Lacustrine Plain Floodplain		Eolian Deposits Marine Silts & Clays	Sandy Clay Loam Silty Clay						
Swamp		Human-Made/Transported	Clav						2
Swamp		Materials (Fill)	olay						B
Other		Other							
Comments:					-				
						·	25.737.8 H		
					× 1	171 142			
						2% 5	5% 15%	20%	25%

DR. CLARENCE WELTI, P.E., P.C.

GEOTECHNICAL ENGINEERING

227 Williams Street · P.O. Box 397 Glastonbury, CT 06033-0397

(860) 633-4623 / FAX (860) 657-2514

June 3, 2015

Mr. Robert M. Baglini, P. E. BETA Group, Inc.

Re: Permeability Testing Soils from Test Pits at Waste Water Disposal Site at Lutheran Home of Southbury, CT

Dear Mr. Baglini:

Herewith are the results of permeability tests on insitu soil samples taken at the subject site. Eight soil samples were taken during two days of test pit exploration. Two inch diameter tubes were driven into the soils at directed locations

If you have any questions please call me.

Very truly yours,

Clarence Welti, PhD, P.E. Pres. Dr. Clarence Welti, P. E., P. C.

LUTHERAN HOME SOUTHBURY, CT

Permeability Test Results

Location/Depth	Thickness	Max Head	Permeability
B-1 @ 7 feet	2.75"	7"	1.54 feet/day
B-2 @ 8 feet	3"	7"	0.26 feet/day
B-3 @ 5.5 feet	3"	7"	0.50 feet/day
B-2 @ 5.5 feet	3"	7"	0.81 feet/day
B-5 @ 4 feet	3.25"	7"	0.67 feet/day
B-5 @ 112"	3.5"	7"	1.53 feet/day
B-9 @ 3.5 feet	2.5"	7"	0.61 feet/day
B-9 @ 7.5 feet	2"	7"	0.65 feet/day

- Notes: 1.Samples were obtained by driving a 2" diameter (1/16" wall) tube into the undisturbed soil surface. Samples were tested in the tubes with the falling head type permeability test.
 - 2. All tubes were sealed immediately after extraction.
 - 3. Laboratory testing done was within 3 days of sample extraction.

ASHWOOD TEST PIT AND WELL LOGS

SOIL TEST RESULTS

The Lutheran Home of Southury 990 Main Street North Southbury, CT

Test date: 5/2/94

DP 100 0" - 4" 4" - 18" 18" - 24" 24" - 120"	topsoil brown gravel fill orange brown fine sandy loam, and fine sahrp sand & gravel firm, light grey brown fine sharp sand & gravel, with silt no mottling, water, ledge
<u>DP 101</u> 0 - 4" 4" - 30" 30" - 72" 72" - 168"	topsoil orange brown fine sandy loam and gravel firm, brown fine sand & gravel, some silt light grey brown fine sharp sand, with silt water @ 162"
<u>DP 102</u> 0" - 4" 4" - 32" 32" - 132" 132"- 156"	topsoil orange brown fine sandy loam and gravel loose, light grey brown fine sand & gravel, with silt dark grey very fine sand, and silt
DP 103 0" - 4" 4" - 24" 24" - 114"	topsoil orange brown fine sandy loam light brown very fine sand, with silt
DP 104 0" - 16" 16" - 44" 44" - 132"	
DP 200 0" - 10" 10" - 36" 36" - 72" 72" - 132"	topsoil orange brown silt loam firm, brown medium coarse sand & gravel, and silt firm , brown fine sharp sand & gravel, some silt

<u>DP 201</u> 0" - 20' 20" - 48' 48" - 96' 96" - 144	orange brown fine sandy loam
<u>DP 202</u> 0" - 72" 72" - 144	light grey brown fine sand & gravel, with silt " dense, dark grey brown sandy till
<u>DP 203</u> 0" - 72" 72" - 120	light grey brown fine sand & gravel, with silt " dense, dark grey brown sandy till
	6/28/94
30" - 48"	topsoil light brown form fine sand and gravel, and silt dense, brown loamy fine sand and gravel, and silt, with lenses brown fine sahrp sand " firm, light brown fine sharp sand and gravel, and silt
DP 111	water @ 160" «
$ \begin{array}{rcrcrcr} 0" & - & 6" \\ 6" & - & 16" \\ 16" & - & 38" \\ 38" & - & 50" \\ 50" & - & 84" \\ \end{array} $	topsoil orange brown fine sandy loam dense light grey fien sharp sand and gravel, and silt dense, brown loamy fine sand, some silt firm, light brown fine sharp sand and gravel, and silt brown medium coarse sharp sand and gravel, and silt
118"- 158"	grey brown fine sand and silt water @ 158"
23" 106"	topsoil brown fine sandy loam firm, light grey brown fine sand and gravel, and silt light brown fine sand, some silt
29" - 86"	topsoil orange brown fine sandy loam moderately compact, grey brown sandy till grey fine sand, some silt

<u>DP 114</u>	
0" - 9"	topsoil
9" - 20"	orange brown fine sandy loam
20" - 84"	moderately compact, grey brown sandy till
84 " - 100"	brown fine to coarse sand, with gravel
100"- 156"	grey fine sand and silt
<u>DP 115</u>	
0" - 10"	topsoil
10" - 27"	brown fine sandy loam
2711 - 9411	moderately compact grow brown conduction

27" - 94" moderately compact, grey brown sandy till 94" - 150" grey fine sand and silt

Note: Deep Test Pits 200, 201, 202, 203, 113, 114, 115 located in eastern portion of property, and not in proposed system area. LBG GEOLOGIC BORING LOGS

LEGGETTE, BRASHEARS & GRAHAM, INC.

GEOLOGIC LOG LEGGETTE, BRASHEARS & GRAHAM, INC. FARMINGTON, CONNECTICUT						OWNER: Beta Group BORING NO: MW-1 PAGE 1 OF 2 PAGE		
SITE LO	OCATION	N: 990 Main Southbury	Street y, Connecticut			EN SIZE & TYPE: 2" PVC NO: 0.010 SETTING: 15-20		
DATE C	OMPLE	FED: 6/23/15	5		SAND	PACK SIZE & TYPE: Filpro #1		
DRILLI	NG COM	PANY: Con	nnecticut Test Borin	ıg	SETT	ING: 13-20'		
		Se	ymour, Connecticut		CASI	NG SIZE & TYPE: 2" PVC		
DRILLI	NG MET	HOD: Hollow	w Stem Auger		SETT	ING: 10-15'		
SAMPLI	ING MET	HOD: Split	Spoon		SEAL	TYPE: Bentonite		
OBSERV	VER: Ca	itlin Bajorek			SETT	ING: 11-13'		
REFERI	ENCE PO	PINT (RP): C	Grade		BACK	XFILL TYPE: Native		
ELEVA	FION OF	RP:			STAT	IC WATER LEVEL:		
STICK-I	U P:				DEVE	DEVELOPMENT METHOD:		
SURFAC	CE COMI	PLETION: c	eurb box, flush mour	nt	DURA	DURATION: YIELD:		
REMAR	KS:							
GPS CO ABBREV	ORDINA VIATION		spoon W = wash	C = cuttings G	f = grab ST =	= shelby tube REC = recovery PPM = parts per million		
GPS CO	ORDINA VIATION		spoon W = wash BLOW COUNT	C = cuttings G REC. (FEET)	e = grab ST = PID READING (PPM)	= shelby tube REC = recovery PPM = parts per million DESCRIPTION		
GPS CO ABBREV DEPTH	ORDINA VIATION (FEET)	S: SS = split	BLOW	REC.	PID READING			
GPS CO ABBRE DEPTH FROM	ORDINA VIATION (FEET) TO	SAMPLE TYPE	BLOW COUNT	REC. (FEET)	PID READING (PPM)	DESCRIPTION 0-1.2 ft: SAND, medium; little fine to coarse sand; trace medium		
GPS CO ABBRE DEPTH FROM	ORDINA VIATION (FEET) TO 2	SAMPLE TYPE SS	BLOW COUNT 2-2-4-3	REC. (FEET) 1.2 1.2	PID READING (PPM)	DESCRIPTION 0-1.2 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; trace grass/organics; brown; semi-compact; dry. 2-2.4 ft: SAND, medium; little fine to coarse sand; trace medium		
GPS CO ABBRE DEPTH FROM	ORDINA VIATION (FEET) TO 2	SAMPLE TYPE SS	BLOW COUNT 2-2-4-3	REC. (FEET) 1.2 1.2	PID READING (PPM) 	0-1.2 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; trace grass/organics; brown; semi-compact; dry. 2-2.4 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; brown; semi-compact; dry.		
GPS CO ABBRE DEPTH FROM	ORDINA VIATION (FEET) TO 2	SAMPLE TYPE SS	BLOW COUNT 2-2-4-3	REC. (FEET) 1.2 1.2	PID READING (PPM) 	0-1.2 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; trace grass/organics; brown; semi-compact; dry. 2-2.4 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; brown; semi-compact; dry. 2.4-2.8 ft: SAND, medium to coarse; brown; semi-compact; dry. 2.8-3.4 ft: SAND, medium; little fine to coarse sand; trace medium		
GPS CO ABBREV DEPTH FROM 0 2	ORDINA VIATION (FEET) TO 2 4	SAMPLE TYPE SS SS SS	BLOW COUNT 2-2-4-3 2-1-3-8	REC. (FEET) 1.2 1.4	PID READING (PPM) 	0-1.2 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; trace grass/organics; brown; semi-compact; dry. 2-2.4 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; brown; semi-compact; dry. 2.4-2.8 ft: SAND, medium to coarse; brown; semi-compact; dry. 2.4-2.8 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; brown; semi-compact; dry. 2.4-2.8 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; brown; semi-compact; dry. 4-5 ft: SAND, medium to fine; trace fine angular gravel; brown;		
GPS CO ABBREV DEPTH FROM 0 2	ORDINA VIATION (FEET) TO 2 4	SAMPLE TYPE SS SS SS	BLOW COUNT 2-2-4-3 2-1-3-8	REC. (FEET) 1.2 1.4	PID READING (PPM) 	0-1.2 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; trace grass/organics; brown; semi-compact; dry. 2-2.4 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; brown; semi-compact; dry. 2.4-2.8 ft: SAND, medium; little fine to coarse; brown; semi-compact; dry. 2.4-2.8 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; brown; semi-compact; dry. 2.4-2.8 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; brown; semi-compact; dry. 2.8-3.4 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; brown; semi-compact; dry. 4-5 ft: SAND, medium to fine; trace fine angular gravel; brown; semi-compact; dry. 5-6 ft: SAND, medium; some fine sand; gray/brown; semi-compact;		
GPS CO ABBREV DEPTH FROM 0 2	ORDINA VIATION (FEET) 2 4 6	SAMPLE TYPE SS SS SS SS	BLOW COUNT 2-2-4-3 2-1-3-8 4-4-8-12	REC. (FEET) 1.2 1.4 2.0 2.0	PID READING (PPM) 	0-1.2 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; trace grass/organics; brown; semi-compact; dry. 2-2.4 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; brown; semi-compact; dry. 2.4-2.8 ft: SAND, medium; little fine to coarse; brown; semi-compact; dry. 2.4-2.8 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; brown; semi-compact; dry. 2.4-2.8 ft: SAND, medium; little fine to coarse sand; trace medium angular gravel; brown; semi-compact; dry. 4-5 ft: SAND, medium to fine; trace fine angular gravel; brown; semi-compact; dry. 5-6 ft: SAND, medium; some fine sand; gray/brown; semi-compact; dry. 6-6.3 ft: SAND, medium; some fine sand; gray/brown; semi-		

E

WELL NO.: MW-1

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	DESCRIPTION
FROM	то	TYPE	COUNT	(FEET)	READING (PPM)	DESCRIPTION
8	10	SS	7-11-11-13	1.7		8-8.5 ft: SAND, fine; brown; semi-compact; moist.
						8.5-9.7 ft: SAND, medium to fine; gray/brown; little fine angular gravel; semi-compact; moist.
10	12	SS	10-8-8-8	0.15		10-10.15 ft: SAND, medium to fine; brown; semi-compact; moist.
12	14	SS	10-13-14-16	0.5		12-12.1 ft: ROCK; gray.
						12.1-12.5 ft: SAND, medium to fine; brown; semi-compact; moist.
14	16	SS	9-9-11-13	2.0		14-16 ft: SAND, medium to fine; gray; semi-compact; saturated.
16	20	Auger				Cuttings; sand; medium; brown/orange; loose; saturated.
						Well Installed at 20 ft.

GEOLOGIC LOG LEGGETTE, BRASHEARS & GRAHAM, INC. FARMINGTON, CONNECTICUT	OWNER: Beta Group BORING NO: MW-2 PAGE 1 OF 2 PAGE		
SITE LOCATION: 990 Main Street Southbury, Connecticut	SCREEN SIZE & TYPE: 2" PVC SLOT NO: 0.010 SETTING: 15-20'		
DATE COMPLETED: 6/23/15	SAND PACK SIZE & TYPE: Filpro #1		
DRILLING COMPANY: Connecticut Test Boring	SETTING: 13-20'		
Seymour, Connecticut	CASING SIZE & TYPE: 2" PVC		
DRILLING METHOD: Hollow Stem Auger	SETTING: 0-15'		
SAMPLING METHOD: Split Spoon	SEAL TYPE: Bentonite		
OBSERVER: Caitlin Bajorek	SETTING: 11-13'		
REFERENCE POINT (RP): Grade	BACKFILL TYPE: Native		
ELEVATION OF RP:	STATIC WATER LEVEL:		
STICK-UP:	DEVELOPMENT METHOD:		
SURFACE COMPLETION: curb box, flush mount	DURATION: YIELD:		
REMARKS:			

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	DESCRIPTION
FROM	то	ТҮРЕ	COUNT	(FEET)	READING (PPM)	DESCRIPTION
0	2	SS	2-2-3-5	1.5		0-1.5 ft: SAND; medium to fine; little roots/wood at 1.2-1.3; brown; semi-compact; dry.
2	4	SS	5-5-5-8	1.3		2-3.3 ft: SAND; medium to fine; trace fine angular gravel; brown; semi-compact; dry.
4	6	SS	7-18-20-14	1.1		4-4.5 ft: SAND, fine to medium; some medium angular gravel; brown; semi-compact; dry.
						4.5-4.7 ft: Rock, pulverized; gray.
						5-5.1 ft: SAND, coarse; brown/red; loose; dry.
6	8	SS	14-15-16-16	1.3		6-7.3 ft: SAND, fine; trace fine to medium angular gravel; semi- compact; brown; moist.
8	10	SS	14-13-11-14	1.1		8-9.1 ft: SAND, fine; little fine to medium angular gravel; semi- compact; brown; moist.
10	12	SS		1.3		10-11.3 ft: SAND, fine; little fine to medium angular gravel; semi- compact; brown; wet.

WELL NO.: MW-2

DEPTH	(FEET)	SAMPLE	SAMPLE BLOW	REC.	PID	DESCRIPTION
FROM	то	ТҮРЕ	BLOW COUNT	(FEET)	READING (PPM)	DESCRIPTION
12	17	А				12-17 ft: SAND, fine; little fine to medium angular gravel; semi- compact; brown; saturdated.
17	20	А				17-20 ft: SAND, fine; little fine to medium angular gravel; semi- compact; brown; saturdated.
						Well installed at 20 ft.

GEOLOGIC LOG LEGGETTE, BRASHEARS & GRAHAM, INC. FARMINGTON, CONNECTICUT	OWNER: Beta Group BORING NO: MW-3 PAGE 1 OF 2 PAGE		
SITE LOCATION: 990 Main Street Southbury, Connecticut	SCREEN SIZE & TYPE: 2" PVC SLOT NO: 0.010 SETTING: 15-20'		
DATE COMPLETED: 6/24/15	SAND PACK SIZE & TYPE: Filpro #1		
DRILLING COMPANY: Connecticut Test Boring	SETTING: 13-20'		
Seymour, Connecticut	CASING SIZE & TYPE: 2" PVC		
DRILLING METHOD: Hollow Stem Auger	SETTING: 0-15'		
SAMPLING METHOD: Split Spoon	SEAL TYPE: Bentonite		
OBSERVER: Caitlin Bajorek	SETTING: 11-13'		
REFERENCE POINT (RP): Grade	BACKFILL TYPE: Native		
ELEVATION OF RP:	STATIC WATER LEVEL:		
STICK-UP:	DEVELOPMENT METHOD:		
SURFACE COMPLETION: curb box, flush mount	DURATION: YIELD:		
REMARKS:			

DEPTH	(FEET)	SAMPLE	BLOW	PID	DESCRIPTION	
FROM	то	TYPE	COUNT	(FEET)	READING (PPM)	DESCRIPTION
0	2	SS	2-5-8-10	1.2		0-1.2 ft: SAND, fine; some medium; some organics (grass/roots); some fine angular gravel; brown; semi-compact; dry.
2	4	SS	10-10-11-8	1.6		2-3.6 ft: SAND, fine; little medium; trace fine angular gravel; brown; semi-compact; dry.
4	6	SS	7-10-13-20	1.7		4-5.7 ft: SAND, fine; little medium; trace fine angular gravel; brown; semi-compact; dry.
6	8	SS	32-18-16-20	1.75		6-7.75 ft: SAND, fine; little medium; trace fine angular gravel; brown; semi-compact; dry.
8	10	SS	15-15-17-20	1.9		8-8.5 ft: SAND, medium to coarse; little medium; trace fine angular gravel; brown; semi-compact; moist.
						8.5-8.6 ft: Rock; black.
						8.6-9.9 ft: SAND, fine; little medium; trace fine angular gravel; brown; semi-compact; moist.

WELL NO.: MW-3

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	DECOMPTION
FROM	то	ТҮРЕ	COUNT	(FEET)	READING (PPM)	DESCRIPTION
10	12	SS	11-19-20-27	1.3		10-10.4 ft: Rock, black; some medium to coarse sand; brown; compact; moist.
						10.4-11.3 ft: SAND, fine to medium; some fine to medium angular gravel; brown; semi-compact; moist.
12	14	SS	31-15-12-15	1.6		12-12.2 ft: SAND, medium; brown; semi-compact; wet.
						12.2-12.3 ft: Rock; gray.
						12.3-12.8 ft: SAND, medium; little angular gravel; brown; semi- compact; wet.
						12.8-13.1 ft: ROCK; black.
						13.1-13.6 ft: SAND, medium; little angular gravel; brown; semi- compact; wet.
14	16	SS	13-15-21-30	2.0		14-15.2 ft: SAND, medium to fine; little medium to fine angular gravel; brown; compact; saturated.
						15.2-16 ft: SAND, medium to coarse; little medium to coarse angular gravel; brown; compact; saturated.
16	20	А				16-20 ft: SAND, fine; little fine to medium angular gravel; brown; loose; saturated.
						Well installed at 20'.

GEOLOGIC LOG	OWNER: Beta Group		
LEGGETTE, BRASHEARS & GRAHAM, INC.	BORING NO: MW-4		
FARMINGTON, CONNECTICUT	PAGE 1 OF 2 PAGE		
SITE LOCATION: 990 Main Street	SCREEN SIZE & TYPE: 2" PVC		
Southbury, Connecticut	SLOT NO: 0.010 SETTING: 16-21'		
DATE COMPLETED: 6/24/15	SAND PACK SIZE & TYPE: Filpro #1		
DRILLING COMPANY: Connecticut Test Boring	SETTING: 13-26'		
Seymour, Connecticut	CASING SIZE & TYPE: 2" PVC		
DRILLING METHOD: Hollow Stem Auger	SETTING: 0-16'; 21-26'		
SAMPLING METHOD: Split Spoon	SEAL TYPE: Bentonite		
OBSERVER: Caitlin Bajorek	SETTING: 11-13'		
REFERENCE POINT (RP): Grade	BACKFILL TYPE: Native		
ELEVATION OF RP:	STATIC WATER LEVEL:		
STICK-UP:	DEVELOPMENT METHOD:		
SURFACE COMPLETION: curb box, flush mount	DURATION: YIELD:		
REMARKS:			

DEPTH	(FEET)	SAMPLE BLOW	REC. PID	DESCRIPTION		
FROM	то	TYPE	COUNT	(FEET)	READING (PPM)	DESCRIPTION
0	2	SS	4-7-6-6	1.4		0-0.7 ft: SAND, fine; some organics; little fine angular gravel; gray; semi-compact; dry.
						0.7-0.8 ft: ROCK; gray.
						0.8-0.9 ft: SAND, medium to fine; black; semi-compact; dry.
						0.9-1.4 ft: SAND, medium; some coarse to fine; little brick pieces; brown; loose; dry.
2	4	SS	6-8-9-9	0.3		2-2.3 ft: SAND, medium; some coarse to fine; brown; loose; dry.
4	6	SS	7-10-15-9	1.0		4-4.6 ft: SAND, medium to coarse; some fine to coarse angular gravel; brown; loose; dry.
						4.6-5.0 ft: ROCK; pulverized; red.

WELL NO.: MW-4

DEPTH	(FEET)	SAMPLE	BLOW		PID	DESCRIPTION
FROM	то	ТҮРЕ	COUNT	(FEET)	READING (PPM)	DESCRIPTION
6	8	SS	7-8-6-3	1.1		6-6.5 ft: SAND, fine; brown; semi-compact; moist.
						6.5-6.8 ft: Rock; gray/red.
						6.8-7.1 ft: SAND, medium; some medium to coarse angular gravel; brown/red; semi-compact; moist.
8	10	SS	6-8-5-5	1.6		8-8.4 ft: SAND, fine; brown; semi-compact; wet.
						8.4-9.1 ft: SAND, medium; little fine angular gravel; brown; semi- compact; wet.
						9.1-9.3 ft: SAND, fine; brown; semi-compact; wet.
						9.3-9.6 ft: SAND, medium; some coarse sand; some medium to fine angular gravel; semi-compact; wet.
15	17	SS	3-7-5-5	2.0		15-16 ft: SAND, fine; some medium; reddish brown; semi-compact; saturated.
						16-17 ft: SAND, medium to coarse; brown; semi-compact; saturated.
20	22	SS	10-13-18-38	2.0		20-20.7 ft: SAND, medium to coarse; some fine; some silt; brown; semi-compact; saturated.
						20.7-22 ft: SILT, some very fine to fine sand; trace fine angular gravel; brown; compact; wet.
25	27	SS	35-50/4	1.0		25-26 ft: SILT, very fine sand; trace fine angular gravel; light brown/gray; compact; wet.
						Refusal at 26'. Well Installed, screened 16-21'

GEOLOGIC LOG LEGGETTE, BRASHEARS & GRAHAM, INC.	OWNER: Beta Group		
	BORING NO: MW-5		
FARMINGTON, CONNECTICUT	PAGE 1 OF 2 PAGE		
SITE LOCATION: 990 Main Street	SCREEN SIZE & TYPE: 2" PVC		
Southbury, Connecticut	SLOT NO: 0.010 SETTING: 10-15'		
DATE COMPLETED: 6/24/15	SAND PACK SIZE & TYPE: Filpro #1		
DRILLING COMPANY: Connecticut Test Boring	SETTING: 9-15'		
Seymour, Connecticut	CASING SIZE & TYPE: 2" PVC		
DRILLING METHOD: Hollow Stem Auger	SETTING: 0-10'		
SAMPLING METHOD: Split Spoon	SEAL TYPE: Bentonite		
OBSERVER: Caitlin Bajorek	SETTING: 7-9'		
REFERENCE POINT (RP): Grade	BACKFILL TYPE: Native		
ELEVATION OF RP:	STATIC WATER LEVEL:		
STICK-UP: PVC 2.5' above grade	DEVELOPMENT METHOD:		
SURFACE COMPLETION: Stick-up	DURATION: YIELD:		
REMARKS:			

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	DESCRIPTION
FROM	то	ТҮРЕ	COUNT	(FEET)	READING (PPM)	DESCRIPTION
0	2	SS	1-0-1-3	1.6		0-0.3 ft: Organics; leaves; twigs.
						0.3-1.6 ft: SAND, fine to very fine; trace organics (roots); brown; semi-compact; dry.
2	4	SS	3-7-11-11	1.3		2-3.3 ft: SAND, fine to very fine; trace organics (roots); little medium to coarse angular gravel; brown; semi-compact; dry.
4	6	SS	12-10-12-14	2.0		4-6 ft: SAND, fine to very fine; little medium to coarse angular gravel; brown; semi-compact; dry.
6	8	SS	10-9-8-8	2.0		6-8 ft: SAND, fine to medium; little medium to coarse angular gravel; rock at 7.3-7.4; brown/light brown; semi-compact; dry.
8	10	SS	10-10-11-11	1.8		8-9.8 ft: SAND, fine to medium; little medium to coarse angular gravel; brown/light brown; semi-compact; moist.
10	12	SS	10-12-18-19	1.4		10-11.4 ft: SAND, fine to medium; little medium to coarse angular gravel; brown/light brown; semi-compact; moist.

WELL NO.: MW-5

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	DECEMBERON
FROM	то	ТҮРЕ	COUNT	(FEET)	READING (PPM)	DESCRIPTION
12	14	SS	17-26-18-16	1.9		12-12.3 ft: SAND, medium; some fine angular gravel; brown; loose; moist.
						12.3-12.6 ft: SAND, medium to coarse; some very coarse; brown/red; loose; moist.
						12.6-13 ft: Rock; black.
						13-13.9 SAND, fine to coarse; brown; semi-compact; wet.
14	16	SS	15-30-45-50	2.0		14-15.8 ft: SAND, fine to medium; brown; semi-compact; wet.
						15.8-16 ft: Silt and Sand, very fine; brown/gray; semi-compact; wet.
16	20	А				Silt and Sand, very fine; brown/gray; semi-compact; wet.
			Continue	to Auger per Tu	inde. No split spo	oon required.
20	25	А				Silt, gray wet.
25	30	А				Silt, gray wet.
						Well installed. Set at ~15'

GEOLOGIC LOG LEGGETTE, BRASHEARS & GRAHAM, INC. FARMINGTON, CONNECTICUT	OWNER: Beta Group BORING NO: MW-6 PAGE 1 OF 2 PAGE			
SITE LOCATION: 990 Main Street Southbury, Connecticut	SCREEN SIZE & TYPE: 2" PVC SLOT NO: 0.010 SETTING: 34-39'			
DATE COMPLETED: 6/25/15	SAND PACK SIZE & TYPE: Filpro #1			
DRILLING COMPANY: Connecticut Test Boring	SETTING: 33-39'			
Seymour, Connecticut	CASING SIZE & TYPE: 2" PVC			
DRILLING METHOD: Hollow Stem Auger	SETTING: 0-34'			
SAMPLING METHOD: Split Spoon	SEAL TYPE: Bentonite			
OBSERVER: Caitlin Bajorek	SETTING: 31-33'			
REFERENCE POINT (RP): Grade	BACKFILL TYPE: Native			
ELEVATION OF RP:	STATIC WATER LEVEL:			
STICK-UP: PVC 3' above grade	DEVELOPMENT METHOD:			
SURFACE COMPLETION: Stick-up	DURATION: YIELD:			
REMARKS: Offset from stake ~15', moved away from test pit areas				

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	DECEMBERON
FROM	то	ТҮРЕ	COUNT	(FEET)	READING (PPM)	DESCRIPTION
0	2	SS	1-8-1-2	1.4		0-0.3 ft: ORGANICS; medium to fine sand; leaves; roots; black; loose; dry.
						0.3-0.8 ft: SAND, fine; some medium; little organics/roots; dark brown; semi-compact; dry.
						0.8-1.4 ft: SAND, fine; brown; semi-compact; dry.
2	4	SS	5-5-6-6	0.7		2-2.7 ft: SAND, fine; brown; semi-compact; dry.
4	6	SS	26-34-20-29	1.4		4-5 ft: SAND, fine; some medium to coarse angular gravel; brown; semi-compact; dry.
						5-5.4 ft: Crushed rock; trace fine to medium sand; brown.
6	8	SS	15-13-14-14	1.5		6-6.5 ft: SAND, fine; some fine to medium angular gravel; brown; semi-compact; dry.
						6.5-7.1 ft: Sand and Silt; very fine to fine sand; little fine angular gravel; brown; compact; dry.
						7.1 -7.5 ft: SAND; fine to medium; brown/light brown; loose; dry.

WELL NO.: MW-6

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	DESCRIPTION
FROM	то	TYPE	COUNT	(FEET)	READING (PPM)	DESCRIPTION
8	10	SS	15-16-17-20	1.4		8-8.2 ft: ROCK; crushed; gray.
						8.2-8.4 ft: SAND, fine; some medium; little fine angular gravel; dark brown; semi-compact; dry.
						8.4-9.4 ft: SAND, fine; light brown; semi-compact; moist.
10	12	SS	30-33-37-39	2.0		10-12 ft: Sand and Silt, very fine; little sand; brown; semi-compact; moist.
12	14	SS	46-34-37-39	2.0		12-12.2 ft: Sand and Silt; very fine; some angular gravel; reddish brown; semi-compact; moist.
						12.2-14 ft: SAND, brown; compact; moist.
14	16	SS	29-33-46-52	2.0		14-16 ft: Sand and Silt; brown; compact; moist.
20	22	SS	17-29-37-35	1.8		20-21.8 ft: SILT; little very fine to fine sand; rock at 21.2; compact; wet.
25	27	SS	19-22-27-25	2.0		25-27 ft: Silt and Clay; rock at 26.5 ft; light brown/gray; compact; wet.
30	32	SS	16-16-17-17	2.0		30-32 ft: Silt and Clay; trace fine to coarse angular gravel; brown; very compact; wet.
35	37	SS	17-35-34-40	1.6		35-36.6 ft: Silt and Clay; trace fine to coarse angular gravel; brown; very compact; wet.
	40	А				Silt and Clay; trace fine to coarse angular gravel; brown; very compact; wet.
						Install well at ~39 ft.

GEOLOGIC LOG LEGGETTE, BRASHEARS & GRAHAM, INC. FARMINGTON, CONNECTICUT	OWNER: Beta Group BORING NO: MW-7 PAGE 1 OF 2 PAGE			
SITE LOCATION: 990 Main Street Southbury, Connecticut	SCREEN SIZE & TYPE: 2" PVC SLOT NO: 0.010 SETTING: 6-11'			
DATE COMPLETED: 6/25/15	SAND PACK SIZE & TYPE: Filpro #1			
DRILLING COMPANY: Connecticut Test Boring	SETTING: 3-11'			
Seymour, Connecticut	CASING SIZE & TYPE: 2" PVC			
DRILLING METHOD: Hollow Stem Auger	SETTING: 0-6'			
SAMPLING METHOD: Split Spoon	SEAL TYPE: Bentonite			
OBSERVER: Caitlin Bajorek	SETTING: 2-3'			
REFERENCE POINT (RP): Grade	BACKFILL TYPE: Native			
ELEVATION OF RP:	STATIC WATER LEVEL:			
STICK-UP:	DEVELOPMENT METHOD:			
SURFACE COMPLETION: Stick up	DURATION: YIELD:			
REMARKS: Offset about 5' from stake; too many trees to cut down.				

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	DESCRIPTION
FROM	то	ТҮРЕ	COUNT	(FEET)	READING (PPM)	DESCRIPTION
0	2	SS	1-1-2-2	1.2		0-0.4 ft: Organics; leaves; roots; some medium to fine sand; dark brown; loose; dry.
						0.4-0.8 ft: SAND, fine to medium; little organics; brown; loose; dry.
						0.8-1.2 ft: SAND, medium; little fine angular gravel; brown; semi- compact; dry.
2	4	SS	7-12-7-6	1.2		2-3.4 ft: SAND, medium; little fine angular gravel; brown/light brown; semi-compact; dry.
4	6	SS	6-9-6-19	1.4		4-4.8 ft: SAND, medium; some fine to coarse; little medium rounded gravel; brown; semi-compact; moist.
						4.8-4.9 ft: SAND, medium to coarse; some fine to medium angular gravel; brown; semi-compact; moist.
						4.9-5.0 ft: ROCK; crushed; dark gray.
						5-5.4 ft: SAND, medium ;some fine to coarse; little fine angular gravel; brown; semi-compact; moist.

WELL NO.: MW-7

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	DESCRIPTION
FROM	то	TYPE	COUNT	(FEET)	READING (PPM)	DESCRIPTION
6	8	SS	9-13-17-19	1.4		6-6.5 ft: SAND, medium; some medium angular gravel; reddish brown; loose; wet.
						6.5-6.6 ft: Rock; crushed; dark gray.
						6.6-7.4 ft: SAND, medium; some fine to coarse sand; some medium to coarse angular gravel; brown/red; loose; wet.
8	10	SS		1.6		8-8.6 ft: Sand and Gravel; medium to coarse sand; fine to medium angular gravel; loose; saturated.
						8.6-9.6 ft: SAND, medium; some fine; trace coarse; trace fine angular gravel; semi-compact; saturated.
Tried to Aug	ger to 15. Hit	ting refusal at	11'. Will try to split spoon to s	see if we can ge	t by.	
10	12	SS				Cannot get by. Refusal at ~11'. Set well.

GEOLOGIC LOG LEGGETTE, BRASHEARS & GRAHAM, INC. FARMINGTON, CONNECTICUT	OWNER: Beta Group BORING NO: MW-8 PAGE 1 OF 3 PAGE					
SITE LOCATION: 990 Main Street Southbury, Connecticut	SCREEN SIZE & TYPE: 2" PVC SLOT NO: 0.010 SETTING: 36-41'					
DATE COMPLETED: 6/29/15	SAND PACK SIZE & TYPE: Filpro #1					
DRILLING COMPANY: Connecticut Test Boring	SETTING: 33.5-41'					
Seymour, Connecticut	CASING SIZE & TYPE: 2" PVC					
DRILLING METHOD: Hollow Stem Auger	SETTING: 0-36'					
SAMPLING METHOD: Split Spoon	SEAL TYPE: Bentonite					
OBSERVER: Caitlin Bajorek	SETTING: 31.5-33.5 [°]					
REFERENCE POINT (RP): Grade	BACKFILL TYPE: Native					
ELEVATION OF RP:	STATIC WATER LEVEL:					
STICK-UP: ~2' above grade	DEVELOPMENT METHOD:					
SURFACE COMPLETION: Stick up	DURATION: YIELD:					
REMARKS: Well installed ~10 ft away from stake, too many trees to cut down.						

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	DESCRIPTION
FROM	то	TYPE	COUNT	(FEET)	READING (PPM)	DESCRIPTION
0	2	SS	1-1-1-4	0.6		0-0.6 ft: SAND, fine; some medium; some organics; little medium to fine angular gravel; brown; loose; dry.
2	4	SS	4-4-9-13	1.6		2-2.6 ft: SAND, fine; some medium; some organics; little medium to fine angular gravel; brown; semi-compact; dry.
						2.6-3.4 ft: SAND, medium to fine; little fine angular gravel; brown; semi-compact; dry.
						3.4-3.6 ft: SAND, medium; some fine sand; little fine angular gravel; light brown; loose; dry.
4	6	SS	8-25-25-30	1.4		4-4.5 ft: SAND, medium; some fine sand; little fine angular gravel; light brown; loose; dry.
						4.5-5.0 ft: ROCK; gray; some fine to medium sand; gray/brown; loose; dry.
						5-5.4 ft: SAND, medium to fine; some fine to medium angular gravel; light brown; loose; dry.

WELL NO.: MW-8

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	
FROM	то	ТҮРЕ	COUNT	(FEET)	READING (PPM)	DESCRIPTION
6	8	SS	38-47-25-24	1.8		6-6.2 ft: ROCK; gray; some fine to medium sand; gray/brown; loose; dry.
						6.2-6.8 ft: SAND, fine; some medium; some fine to medium angular gravel; brown; reddish; semi-compact; dry.
						6.8-7.8 ft: SAND, fine; little medium gravel; some fine to medium angular gravel; brown; semi-compact; dry; moist at 7.8ft.
8	10	SS	22-26-26-45	1.8		8-9.8 ft: SAND, fine; little medium; little silt; little medium to coarse gravel; semi-compact; moist.
10	12	SS	30-36-44-46	1.9		10-11.9 ft: Sand and Silt; very fine sand; brown; compact; moist.
12	14	SS	58-30-56-108	2.0		12-12.4 ft: Sand and Silt; little fine angular gravel; dark brown/red; very compact; moist.
						12.4-12.6 ft: SAND, fine; little medium angular gravel; brown; compact; moist.
						12.6-12.9 ft: Sand and Silt; little fine angular gravel; dark brown/red; very compact; moist.
						12.9-13.9 ft: SILT; little very fine sand; brown; very compact; moist.
						13.9-14 ft: Rock; gray.
Due to very	compact soil	l; auger to 15				
15	17	SS	25-41-116-100/3	2.0		15-17 ft: SILT; very fine sand; some fine angular gravel; brown; very compact; moist.
20	22	SS	22-23-27-29	2.0		20-20.3 ft: Sand and Silt; very fine to fine sand; brown; compact; wet.
						20.3-20.6 ft: Rock and Silt; gray rock; brown silt.
						20.6-22 ft: Sand and Silt; very fine to fine sand; trace fine angular gravel; brown; compact; wet.
25	27	SS	13-19-27-25	2.0		25-27 ft: Sand and Silt; very fine to fine sand; interbedded fine sand; fine angular gravel; brown; very compact; wet.
30	32	SS	15-21-40-37	2.0		30-31.2 ft: Sand and Silt; very fine to fine sand; fine angular gravel; brown; compact; wet.
						31.2-31.6 ft: SAND, medium to fine; brown; semi-compact; wet.
						31.6-32 ft: Sand and Silt; very fine to fine sand; fine angular gravel; brown; very compact; wet.

WELL NO.: MW-8

PAGE 3 OF 3 PAGES

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	
FROM	то	ТҮРЕ	COUNT	(FEET)	READING (PPM)	DESCRIPTION
35	37	SS	17-23-37-39	1.6		35-36.1 ft: Sand and Silt; very fine to fine sand; fine angular gravel; brown; very compact; wet.
						36.1-36.3 ft: ROCK; dark gray.
						36.3-36.6 ft: Sand and Silt; very fine to fine sand; fine angular gravel; interbedded fine sand; brown; very compact; wet.
40	42	SS	26-35-38-43	2.0		40-41.1 ft: SAND, fine; brown; semi-compact; saturated.
						41.1-42 ft: Sand and Silt; very fine to fine sand; fine angular gravel; brown; very compact; wet.
						Well Installed at 41'.

GEOLOGIC LOG LEGGETTE, BRASHEARS & GRAHAM, INC. SHELTON, CONNECTICUT	OWNER: Beta Group WELL NO: MW-9 PAGE 1 OF 2 PAGES			
SITE LOCATION: 990 Main Street South Southbury, CT	SCREEN SIZE & TYPE:2" PVCSLOT NO.:0.010SETTING:18-23 ft bg			
DATE COMPLETED: February 2, 2016	SAND PACK SIZE & TYPE: Filpro #1			
DRILLING COMPANY: ADT	SETTING: 16-23 ft bg			
	CASING SIZE & TYPE: 2" PVC			
DRILLING METHOD: Hollow stem auger	SETTING: 0.5-18 ft bg			
SAMPLING METHOD: Split spoon	SEAL TYPE: Bentonite chips			
OBSERVER: Pamela Lind	SETTING: 14-16 ft bg			
REFERENCE POINT (RP): Grade	BACKFILL TYPE: Native			
ELEVATION OF RP: Not measured	STATIC WATER LEVEL: ~16			
STICK-UP: NA	DEVELOPMENT METHOD:			
SURFACE COMPLETION: flush/curb box	DURATION: YIELD:			
REMARKS: (0-1) (2-3) (4-5) (6-7) (8-9) (15-16) (20-21) rods are wet past 16' drilling to 23' to have 2' above screen of saturation ABBREVIATIONS: SS = split spoon W = wash C = cuttings G = grab ST = shelby tube REC = recovery PPM = parts per million				

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	DESCRIPTION
FROM	то	ТҮРЕ	COUNT	(FEET)	READING (PPM)	DESCRIPTION
0	2	SS	5-2-3-5	1.2		0-1.2: SAND, medium to fine; trace gravel, gray, angular, fine to coarse; brown; semi-compact; dry.
2	4	SS	2-5-16-24	1.2		2-3.2: SAND, medium to fine; trace gravel, gray, angular, fine to coarse; brown; semi-compact; dry.
4	6	SS	6-18-20-33	1.6		4-5.6: SAND, medium to fine; trace gravel, gray, angular, fine to coarse; brown; semi-compact; dry.
6	8	SS	23-22-28-20	1.2		6-7.2: SAND, medium to fine; trace gravel, fine to medium, sub- angular/sub-rounded; brown; semi-compact; moist.
8	10	SS	15-23-17-35	1.4		 8-9: SAND, medium to fine; trace gravel, fine to medium, sub-angular/sub-rounded; brown; semi-compact; moist. 9-9.1: SAND, medium; peastone layer below sand; light brown, dry, loose. 9.1-9.4: SAND, medium to fine; trace gravel, fine to medium, sub-angular/sub-rounded; brown; semi-compact; moist.

WELL NO.: MW-9

PAGE 2 OF 2 PAGES

DEPTH	DEPTH (FEET) SAMPLE		BLOW	REC.	PID READING	DESCRIPTION
FROM	то	ТҮРЕ	COUNT	(FEET)	READING (PPM)	DESCRIPTION
15	17	SS	15-16-22-27	1.6		15-16.6: SAND, very fine to fine; trace gravel; fine to medium, sub-rounded; brown; semi-compact; moist.
20	22	SS	20-27-29-51	1.7		20-21.7: SAND, very fine; trace gravel; fine to coarse; sub- angular/sub-rounded; compact; wet.
						Well installed at 23 ft bg.

H:\Beta Group\Luthern Home\Geologic logs.doc

GEOLOGIC LOG	OWNER: Beta Group		
LEGGETTE, BRASHEARS & GRAHAM, INC.	WELL NO: MW-10		
SHELTON, CONNECTICUT	PAGE 1 OF 1 PAGES		
SITE LOCATION: 990 Main Street South	SCREEN SIZE & TYPE: 2" PVC		
Southbury, CT	SLOT NO.: 0.010 SETTING: 8-13 ft bg		
DATE COMPLETED: February 3, 2016	SAND PACK SIZE & TYPE: Filpro #1		
DRILLING COMPANY: ADT	SETTING: 6-13 ft bg		
	CASING SIZE & TYPE: 2" PVC		
DRILLING METHOD: Hollow stem auger	SETTING: 2 ft above grade – 8 ft bg		
SAMPLING METHOD: Split spoon	SEAL TYPE: Bentonite chips		
OBSERVER: Pamela Lind	SETTING: 4-6 ft bg		
REFERENCE POINT (RP):	BACKFILL TYPE: Native		
ELEVATION OF RP:	STATIC WATER LEVEL: ~6		
STICK-UP: ~2	DEVELOPMENT METHOD:		
SURFACE COMPLETION: stick-up	DURATION: YIELD:		
REMARKS: (0-1) (2-3) (4-6) (6-7) (8-9) (10-11)			
ABBREVIATIONS: SS = split spoon $W = $ wash C = cuttings G = g	rab $ST = shelby tube REC = recovery PPM = parts per million$		

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	DESCRIPTION
FROM	то	ТҮРЕ	COUNT	(FEET)	READING (PPM)	DESCRIPTION
0	2	SS	1-1-2-2	1.3		0-1.3: SAND, very fine; trace gravel, fine sub-rounded; dark brown; semi-compact; dry.
2	4	SS	3-9-9-10	1.3		2-3.3: SAND, very fine/silt; trace gravel, medium to coarse, sub- rounded; orange-gray; compact; moist.
4	6	SS	6-17-18-13	2		4-6: SAND, medium to very fine, trace gray clay; some gravel, fine to coarse, sub-angular/sub-rounded; dark brown/orange; semi-compact; moist.
6	8	SS	18-28-21-19	0.9		6-6.9: SAND, medium to very fine; some gravel, fine to medium, sub-angular/sub- rounded; dark brown/red/orange; very compact; wet.
8	10	SS	5-7-16-33	0.9		8-8.9: SAND, coarse to fine, brown, loose, wet.
10	12	SS	10-13-39-41	0.9		10-10.9: SAND, coarse to fine; some gravel, fine to coarse, sub- rounded; brown; loose; wet.
						Well installed at @ 13 ft bg.

GEOLOGIC LOG	OWNER: Beta Group		
LEGGETTE, BRASHEARS & GRAHAM, INC.	WELL NO: MW-11		
SHELTON, CONNECTICUT	PAGE 1 OF 1 PAGES		
SITE LOCATION: 990 Main Street South	SCREEN SIZE & TYPE: 2" PVC		
Southbury, CT	SLOT NO.: 0.010 SETTING: 8-13 ft bg		
DATE COMPLETED: February 3, 2016	SAND PACK SIZE & TYPE: Filpro #1		
DRILLING COMPANY: ADT	SETTING: 6-13 ft bg		
	CASING SIZE & TYPE: 2" PVC		
DRILLING METHOD: Hollow stem auger	SETTING: 2 ft above grade – 8 ft bg		
SAMPLING METHOD: Split spoon	SEAL TYPE: Bentonite chips		
OBSERVER: Pamela Lind	SETTING: 4-6 ft bg		
REFERENCE POINT (RP):	BACKFILL TYPE: Native		
ELEVATION OF RP:	STATIC WATER LEVEL: ~3		
STICK-UP: ~2	DEVELOPMENT METHOD:		
SURFACE COMPLETION: stick-up	DURATION: YIELD:		
REMARKS: (0-1) (2-3) (4-5) (8-9) (10-11)			
ABBREVIATIONS: SS = split spoon W = wash C = cuttings G =	grab ST = shelby tube REC = recovery PPM = parts per million		

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	DESCRIPTION
FROM	то	ТҮРЕ	COUNT	(FEET)	READING (PPM)	DESCRIPTION
0	2	SS	1-2-2-5	1		0-1: SAND, very fine; organics; dark brown; semi-compact; dry.
2	4	SS	4-4-6-10	0.9		2-2.9: SAND, medium to very fine, some clay; trace gravel, fine to coarse; sub-angular; gray/brown; compact; wet.
4	6	SS	7-10-23-21	0.6		4-4.6: SAND, medium to very fine, some clay; trace gravel; fine to coarse, sub-angular; gray/brown; compact; wet.
6	8	SS	12-12-9-8	0		6-8: No recovery.
8	10	SS	10-7-6-5	1		8-9: SILT; trace gravel/peastone; medium; sub-angular; gray; compact; wet.
10	12	SS	5-8-11-12	0.6		10-10.6: SAND, very fine/little silt; little gravel, fine to coarse; sub- angular/sub-rounded; gray/brown; semi-compact; wet.
						Well installed at 13 ft bg.

GEOLOGIC LOG	OWNER: Beta Group
LEGGETTE, BRASHEARS & GRAHAM, INC.	WELL NO: MW-12
SHELTON, CONNECTICUT	PAGE 1 OF 1 PAGES
SITE LOCATION: 990 Main Street South	SCREEN SIZE & TYPE: 2" PVC
Southbury, CT	SLOT NO.: 0.010 SETTING: 18-23 ft bg
DATE COMPLETED: February 3, 2016	SAND PACK SIZE & TYPE: Filpro #1
DRILLING COMPANY: ADT	SETTING: 16-23 ft bg
	CASING SIZE & TYPE: 2" PVC
DRILLING METHOD: Hollow stem auger	SETTING: 0.5 - 18 ft bg
SAMPLING METHOD: Split spoon	SEAL TYPE: Bentonite chips
OBSERVER: Pamela Lind	SETTING: 14 - 16 ft bg
REFERENCE POINT (RP):	BACKFILL TYPE: Native
ELEVATION OF RP:	STATIC WATER LEVEL: ~
STICK-UP:	DEVELOPMENT METHOD:
SURFACE COMPLETION: flush/curb box	DURATION: YIELD:
REMARKS: (0-1) (2-3) (4-5) (10-11) (20-21)	
ABBREVIATIONS: SS = split spoon W = wash C = cuttings G = gr	rab ST = shelby tube REC = recovery PPM = parts per million

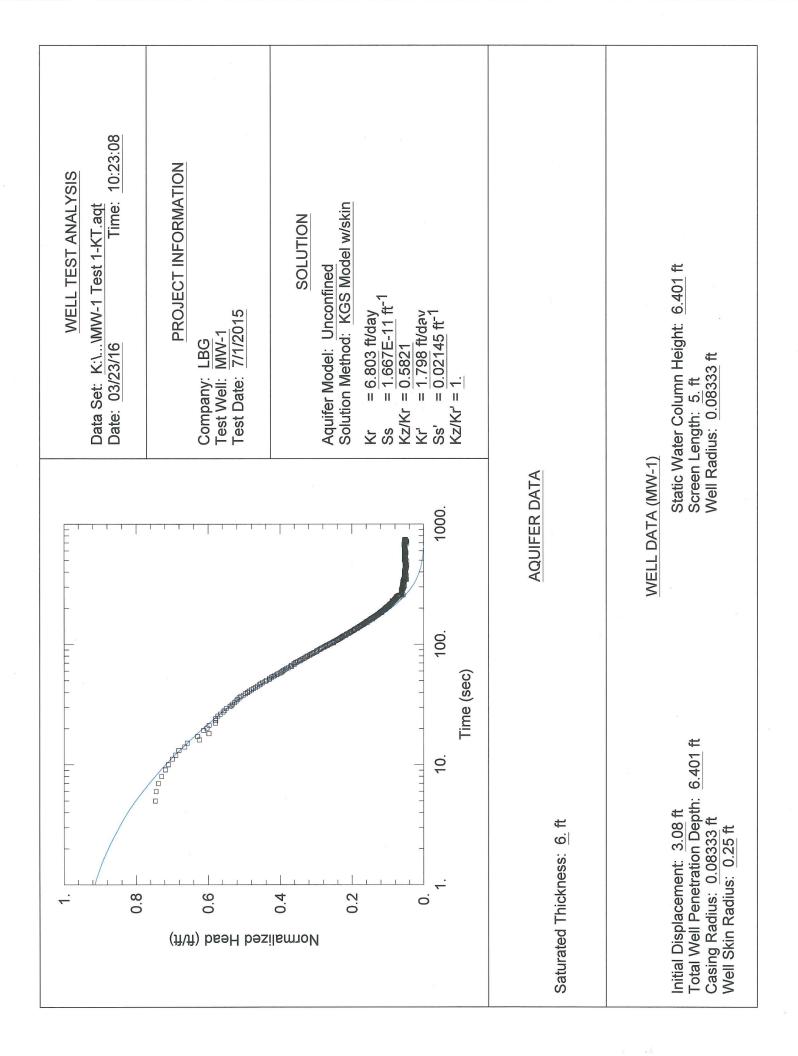
DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	
FROM	то	ТҮРЕ	COUNT	(FEET)	READING (PPM)	DESCRIPTION
0	2	SS	8-4-6-6	1.5		0-1: SAND, organics; dark brown; semi-compact; moist.
						1-1.5: SAND, medium to fine; gray; loose; dry.
2	4	SS	13-18-11-10	1.1		2-3.1: SAND, fine; little gray, fine to medium, sub-angular/sub- rounded gravel; brown/gray; semi-compact; dry.
4	6	SS	5-9-9-8	1		4-5: SAND, fine; trace gravel, fine to medium, sub-angular/sub-rounded; brown; loose; dry.
6	8	SS	11-4-6-50 x 5	0		6-8: No recovery.
10	12	SS	4-4-4-3	1		10-11: SILT, organics; black; semi, dry.
15	17	SS	3-3-4-5	0		15-17: NO RECOVERY; rack in shoe.
20	22	SS	10-12-13-28	0.9		20-20.9: SAND, very fine; trace gravel, fine, sub-rounded; gray; compact; wet.
						Well installed at 23 ft bg.

GEOLOGIC LOG LEGGETTE, BRASHEARS & GRAHAM, INC. SHELTON, CONNECTICUT	OWNER: Beta Group WELL NO: MW-13 PAGE 1 OF 1 PAGES		
SITE LOCATION: 990 Main Street South Southbury, CT	SCREEN SIZE & TYPE: 2" PVC SLOT NO.: 0.010 SETTING: 18-23 ft bg		
DATE COMPLETED: February 3, 2016	SAND PACK SIZE & TYPE: Filpro #1		
DRILLING COMPANY: ADT	SETTING: 16-23 ft bg		
	CASING SIZE & TYPE: 2" PVC		
DRILLING METHOD: Hollow stem auger	SETTING: 0.5 - 18 ft bg		
SAMPLING METHOD: Split spoon	SEAL TYPE: Bentonite chips		
OBSERVER: Pamela Lind	SETTING: 16 - 18 ft bg		
REFERENCE POINT (RP):	BACKFILL TYPE: Native		
ELEVATION OF RP:	STATIC WATER LEVEL: ~13		
STICK-UP:	DEVELOPMENT METHOD:		
SURFACE COMPLETION: flush/curb box	DURATION: YIELD:		
REMARKS: (0-1) (2-3) (4-5) (6-7) (8-9) (10-11) (15-16) (20-21)			
ABBREVIATIONS: SS = split spoon $W = $ wash $C =$ cuttings $G = $ gr	rab ST = shelby tube REC = recovery PPM = parts per million		

DEPTH	(FEET)	SAMPLE	BLOW	REC.	PID	DECEMPTION
FROM	то	ТҮРЕ	COUNT	(FEET)	READING (PPM)	DESCRIPTION
0	2	SS	1-3-3-4	0.6		0-0.6: SAND, fine; organics; dark brown; loose; dry.
2	4	SS	11-28-20-26	0.6		2-2.6: SAND, medium to fine; trace gravel, fine to medium, sub-rounded; light brown; loose; dry.
4	6	SS	11-15-16-19	1.3		4-5.3: SAND, medium to fine; trace gravel, fine to medium, sub- rounded; light brown; loose; dry.
6	8	SS	31-31-21-19	1		6-7: SAND, medium to fine; trace gravel, fine to medium, sub- rounded; light brown; loose; dry.
8	10	SS	21-31-27-19	1.2		8-9.2: SAND, medium to fine; some gravel, fine to coarse, sub- angular/sub-rounded; crushed white-red rock; brown; semi-compact; dry.
10	12	SS	14-19-22-29	1.6		10-12.6: SAND, medium to fine; some gravel, fine to coarse, sub- angular/sub-rounded; crushed white-red rock; brown; semi-compact; moist.
15	17	SS	12-15-221-27	1.6		15-16.6: SAND, medium to fine; some gravel, fine to coarse, sub- angular/sub-rounded; crushed white-red rock; brown; semi-compact; wet.

20	22	SS	13-20-19-26	1.4	20-21.4: SAND, very fine; trace gravel, fine, sub-rounded; gray; compact; wet.
					Well installed at 23 ft bg.

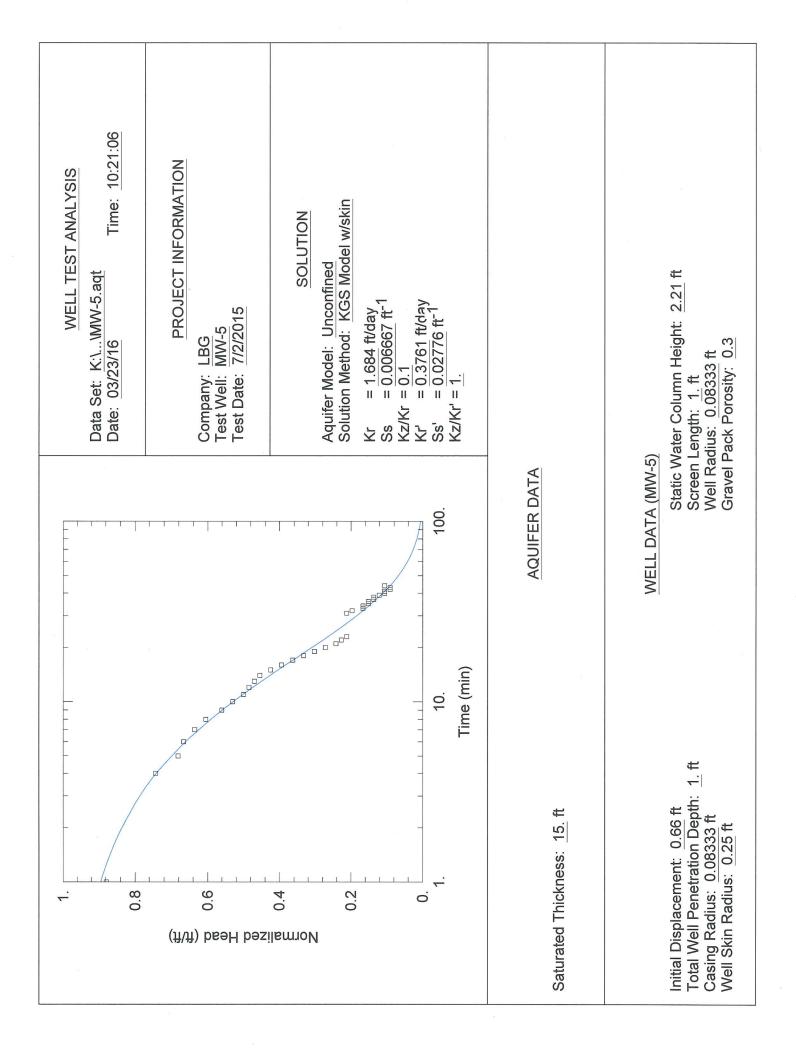
H:\Beta Group\Luthern Home\Geologic logs.doc

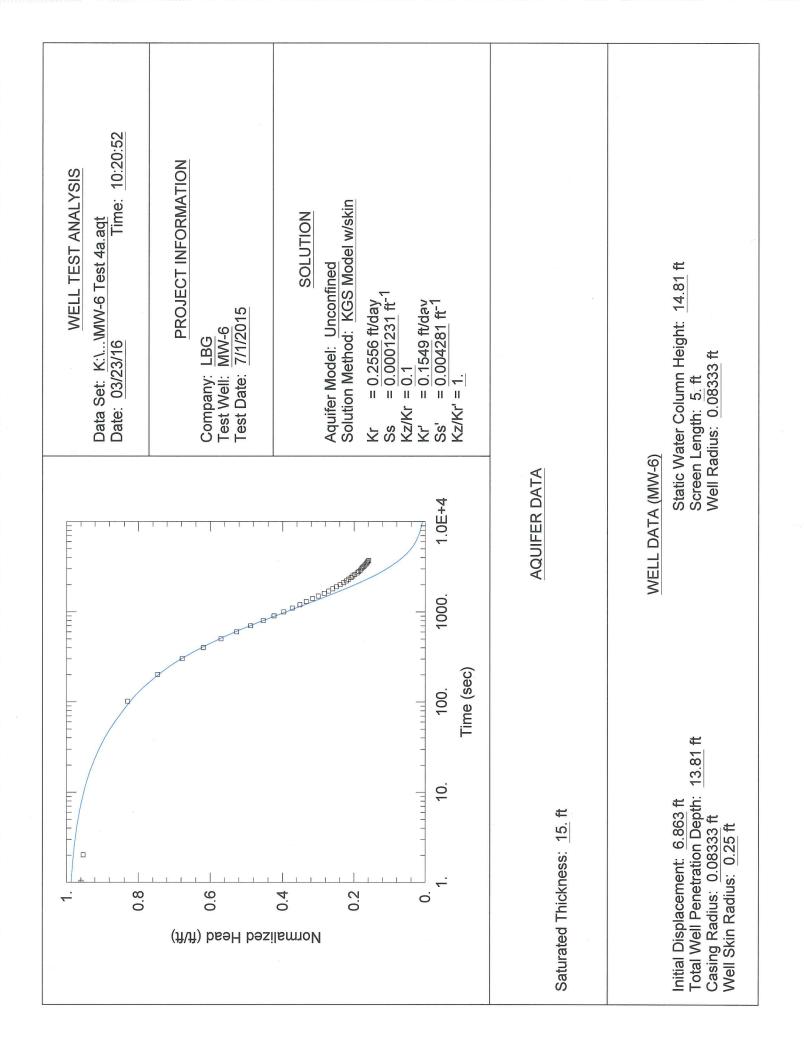

APPENDIX II

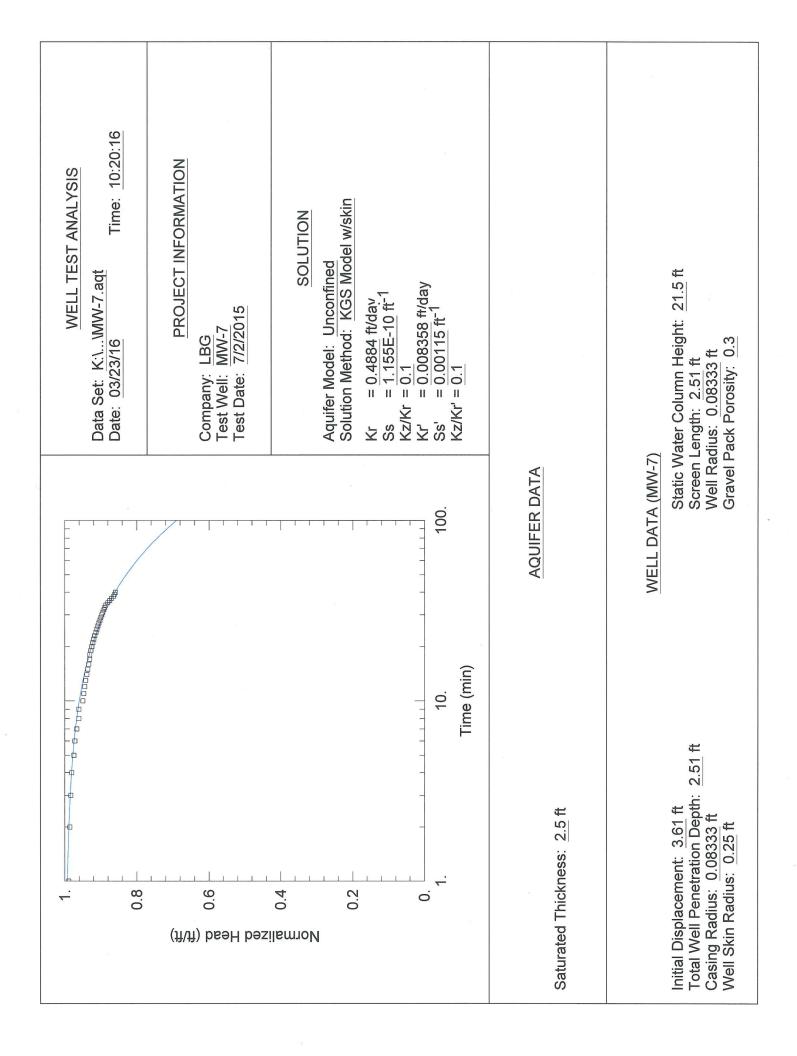
HISTORICAL HYDRAULIC CONDUCTIVITY DATA

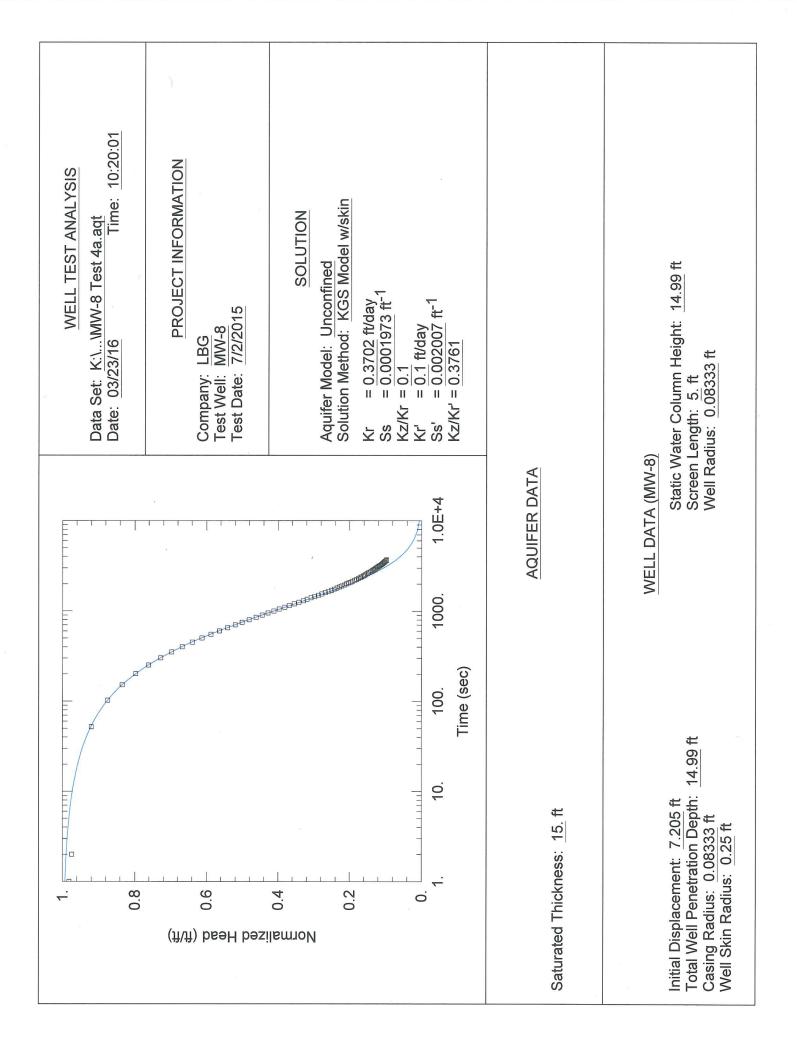
LEGGETTE, BRASHEARS & GRAHAM, INC.

SLUG TEST


LEGGETTE, BRASHEARS & GRAHAM, INC.




6. 4.8	WELL TEST ANALYSIS Data Set: K:\MWV-2 Test 2.aqt Date: 03/23/16 Time: 10:22:26
is concernent (ft)	PROJECT INFORMATION Company: LBG Test Well: <u>MW-2</u> Test Date: 7/1/2015
72 4. 1. 	<u>SOLUTION</u> Aquifer Model: <u>Unconfined</u> Solution Method: <u>KGS Model w/skin</u> Kr = <u>1.318</u> ft/dav Ss = <u>2.425F-6 ft⁻¹</u>
0. 1. 10. 100. 1000. 1.0E+4 Time (sec)	ふ ふ
Saturated Thickness: <u>10.</u> ft	
Initial Displacement: 5.053 ft Total Well Penetration Depth: 9.885 ft Casing Radius: 0.08333 ft Well Skin Radius: 0.25 ft	A (MW-2) Static Water Column Height: <u>9.885</u> ft Screen Length: <u>5.</u> ft Well Radius: <u>0.08333</u> ft


<u>WELL TEST ANALYSIS</u> Data Set: <u>K:\\MW-3 Test 3.aqt</u> Date: <u>03/23/16</u> Time: <u>10:21:56</u>	PROJECT INFORMATION Company: <u>LBG</u> Test Well: <u>MW-3</u> Test Date: <u>7/1/2015</u>	SOLUTIONAquifer Model: UnconfinedSolution Method: KGS Model w/skinKr $= 2.191$ ft/daySs $= 0.0002723$ ft ⁻¹ Kz/Kr $= 0.1$ Kr' $= 2.027$ ft/daySs' $= 0.005741$ ft ⁻¹ Kz/Kr' $= 1.$		v (MW-3) Static Water Column Height: <u>5.875</u> ft Screen Length: <u>5.</u> ft Well Radius: <u>0.08333</u> ft
		1000.	AQUIFER DATA	WELL DATA (MW-3) Static W Screen L Well Rad
	2 Concert Statement of the statement of	10. 100. 100.		<u>5.875</u> ft
1. 0.8	(fi) bsəH bəzil Ö	0.00.00.00.00.00.00.00.00.00.00.00.00.0	Saturated Thickness: <u>6.</u> ft	Initial Displacement: 0.928 ft Total Well Penetration Depth: 5 Casing Radius: 0.08333 ft Well Skin Radius: 0.25 ft

<u>WELL TEST ANALYSIS</u> Data Set: K:\\MWV-4 Test 3.aqt Date: 03/23/16 Time: 10:21:43	PROJECT INFORMATION Company: <u>LBG</u> Test Well: <u>MW-4</u> Test Date: <u>7/1/2015</u>	SOLUTIONAquifer Model: UnconfinedAquifer Model: UnconfinedSolution Method: KGS Model w/skinKrKrSsSsSs'0.00406 ft ⁻¹ Kz/Kr' = 1.		<u>A (MW-4)</u> Static Water Column Height: <u>11.93</u> ft Screen Length: <u>5.</u> ft Well Radius: <u>0.08333</u> ft
		1000	AQUIFER DATA	WELL DATA (MW-4) Static W Screen L Well Rad
	10 ⁰ 00 ⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰	10. Time (sec)		11.93 ft
1 . 0.80	(jî\î) bsəH bəz Ö	Normali 4. 0. 4. 0. 5. 0. 0. 0. 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Saturated Thickness: 17. ft	Initial Displacement: <u>4.022</u> ft Total Well Penetration Depth: Casing Radius: <u>0.08333</u> ft Well Skin Radius: <u>0.25</u> ft

SIEVE ANALYSIS SIZE PERM

LEGGETTE, BRASHEARS & GRAHAM, INC.

	Average of Applicale Methods		10	16	12	19	14	. 6	19	13	14	14	13	16	18	36	19	15
	USBR		2	5	6	7	5	5	81	3	3	5	5	4	4	9	7	3
	Zunker		13	22	22	. 28	20	15	52	16	19	18	20	20	24	39	29	16
	Kozeny		31	50	40	63	44	28	85	39	45	36	43	48	59	88	63	45
	Kruger	feet per day)	1	2	3	3	2	2	8	2	2	2	2	2	2	4	3	2
Method	Sauerbrei	Hydraulic Conductivity (feet per day)	4	7	5	6	5	3	16	9	7	4	9	6	10	12	6	7
	Beyer	Hydraulic	7	11	11	14	10	6	24	8	10	10	11	II	13	21	15	6
	Terzaghi		4	5	3	9	4	2	9	5	5	3	5	6	8	10	7	5
	Slichter		2	3	2	4	2	2	4	3	3	2	3	4	5	9	4	e
	Hazen		7	10	6	1 13	6	7	20	6	10	8	10	п і	14	21	15	10
	Material		fine sand	fine sand	medium sand	medium sand	medium sand	medium sand	very fine gravel	fine sand	fine sand	medium sand	fine sand	fine sand	fine sand	medium sand	medium sand	fine sand
	Effective size (inch)		0.002	0.002	0.003	0.003	0.002	0.002	0.005	0.002	0.002	0.000	0.002	0.002	0.003	0.000	0.003	0.002
	Uniformity 50 % Grain Size (inch) Effective size (inch)		0.006	0.009	0.016	0.010	0.010	0.013	0.111	0.006	0.007	0.011	0.009	0.006	0.007	0.011	0.011	0.007
	Uniformity		4.100	4.813	10.029	4.966	5.990	10.290	39.196	3.566	3.942	8.065	6.008	3.401	3.346	4.780	5.527	3.698
	Sample Depth (feet below grade)		8-10	20.0	4-6	17	6-8	20	4-6	25-27	6-8	12-14	30	10-12	40	4-6	11	15-17
	Test Pit ID		T-WM	MW-1	MW-2	MW-2	MW-3	MW-3	MW-4	MW-4	MW-5	MW-5	MW-5	MW-6	MW-6	MW-7	MW-7	MW-8

Sample ID:	MW-3
Sample Date:	6/24/2015
Interval:	6-8

HYDRAULIC CONDUCTIVITY CALCULATED FROM SIEVE ANALYSIS

SIEVE ANALYSIS		SAUERBREI METHOD	
Percent 0 15.1 31.8 44.8 55.5 64.5 71 76 79.6 81.3 83.9 85.3 87.4	Diameter 0.038 0.075 0.15 0.212 0.3 0.425 0.6 0.85 1.18 1.4 2 2.36 3.35 4.75	$K = 1.88E-03 \text{ cm/sec}$ $C = 0$ $\varphi(n)$ $n = 0$ $\eta = a$ $d_e = 0$ <u>VARIABLES</u> <u>K</u> - Hydraulic conductivity	.14 mm ² /s 0.375 $= \frac{n^{3}}{(1-n)^{2}}$ 0.255 \cdot (1 + 0.83 ⁷) d_{60}/d_{10} d_{17} (cm/s)
89.8 100	4.75 4.76	 g - Acceleration due to gravity v - Viscosity C - Coefficient 	(m/s^2) (mm^2/s)
SIZE <u>DISTRIBU</u>	TION	$\varphi(n)$ - Function of porosity n - Porosity *	-
Percent 0 10 90 0 0	Size +3" Gravel Sand Silt Clay	$\eta - \text{Uniformity}$ $d_e - \text{Effective grain diameter}$ $d_{10} - \text{Diameter at 10\%}$ $d_{17} - \text{Diameter at 17\%}$ $d_{60} - \text{Diameter at 60\%}$	- (mm) (mm) (mm)

Sample ID:	MW-1
Sample Date:	6/23/15
Interval:	8-10

HYDRAULIC CONDUCTIVITY CALCULATED FROM SIEVE ANALYSIS

SIEVE ANALYSIS		SAUERBREI METHOD	
Percent 0 28.1 49.2 62.6 71.7 78.6 83.3 87 89.5 90.4	Diameter 0.038 0.074 0.15 0.211 0.297 0.419 0.594 0.841 1.191 1.41	K = 1.39 E-03 cm/sec $C = 0\varphi(n)n = 0$.14 mm ² /s 0.375 $= \frac{n^{3}}{(1-n)^{2}}$ 0.255 \cdot (1 + 0.83 ⁿ) d ₆₀ /d ₁₀
92.1 92.7 93.8 95.4 100	1.999 2.38 3.353 4.75 4.76	VARIABLES K - Hydraulic conductivity g - Acceleration due to gravity v - Viscosity C - Coefficient	(cm/s) (m/s^2) (mm^2/s)
SIZE <u>DISTRIBU</u>	TION	$\varphi(n)$ - Function of porosity n - Porosity *	_
Percent 0 5 95 0 0	Size +3" Gravel Sand Silt Clay	$ \begin{aligned} \eta & - \text{ Uniformity} \\ d_e & - \text{ Effective grain diameter} \\ d_{10} & - \text{ Diameter at 10\%} \\ d_{17} & - \text{ Diameter at 17\%} \\ d_{60} & - \text{ Diameter at 60\%} \end{aligned} $	- (mm) (mm) (mm)

Sample ID:	MW-1
Sample Date:	6/23/2015
Interval:	20

HYDRAULIC CONDUCTIVITY CALCULATED FROM SIEVE ANALYSIS

SIEVE ANALYSIS		SAUERBREI METHOD
Percent 0 15 31.6 47.5 61.7 74.4 81.8 85.9 88.4 89.5 91.3	Diameter 0.038 0.075 0.15 0.212 0.3 0.425 0.6 0.85 1.18 1.4 2	$K = \frac{g}{v} \cdot C \cdot \varphi(n) \cdot d_e^2 \text{where}: g = 9.81 \text{ m/s}^2$ $K = 2.42 \text{E-03 cm/sec} \qquad V = 1.14 \text{ mm}^2/\text{s}$ $C = 0.375$ $\varphi(n) = \frac{n^3}{(1-n)^2}$ $n = 0.255 \cdot (1+0.83^{\eta})$ $\eta = d_{60}/d_{10}$ $d_e = d_{17}$ VARIABLES
92 93.7 94.9 100	2.36 3.35 4.75 4.76	VARIABLES K - Hydraulic conductivity(cm/s) g - Acceleration due to gravity(m/s ²) v - Viscosity(mm ² /s) C - Coefficient-
SIZE DISTRIBU Percent	<u>TION</u> Size	$\varphi(n)$ - Function of porosity – n - Porosity * – η - Uniformity –
<u>1 creent</u> 0 5 95 0 0	+3" Gravel Sand Silt Clay	d_e - Effective grain diameter(mm) d_{10} - Diameter at 10%(mm) d_{17} - Diameter at 17%(mm) d_{60} - Diameter at 60%(mm)

Sample ID:	MW-2
Sample Date:	6/23/2015
Interval:	4-6

HYDRAULIC CONDUCTIVITY CALCULATED FROM SIEVE ANALYSIS

SIEVE ANALYSIS		SAUERBREI METHOD
Percent 0 11.7 23.7 33.4 42.3 51.2 58.1 63.3 66.8 68.3 70.8	Diameter 0.038 0.075 0.15 0.212 0.3 0.425 0.6 0.85 1.18 1.4 2	$K = \frac{g}{v} \cdot C \cdot \varphi(n) \cdot d_e^2 \text{where}: g = 9.81 \text{ m/s}^2$ $K = 1.71 \text{E-03 cm/sec} v = 1.14 \text{ mm}^2/\text{s}$ $C = 0.375$ $\varphi(n) = \frac{n^3}{(1-n)^2}$ $n = 0.255 \cdot (1+0.83^{\eta})$ $\eta = d_{60}/d_{10}$ $d_e = d_{17}$
70.8 72 74.5 77.5 100 SIZE	2 2.36 3.35 4.75 4.76	VARIABLES K - Hydraulic conductivity(cm/s) g - Acceleration due to gravity(m/s²) v - Viscosity(mm²/s) C - Coefficient-
DISTRIBU	TION	$\varphi(n)$ - Function of porosity – n - Porosity * –
Percent 0 23 77 0 0	<u>Size</u> +3" Gravel Sand Silt Clay	

Sample ID:	MW-2
Sample Date:	6/23/2015
Interval:	17

HYDRAULIC CONDUCTIVITY CALCULATED FROM SIEVE ANALYSIS

SIEVE ANALYSIS		SAUERBREI METHOD	
Percent 0 11.7 28.4 44.4 57.2 65.5 70.7 74.4 77.6 79.3	Diameter 0.038 0.075 0.15 0.212 0.3 0.425 0.6 0.85 1.18 1.4	$K = \frac{g}{v} \cdot C \cdot \varphi(n) \cdot d_e^2 \text{where}: g = 9.81 \text{ m}$ $K = 3.07 \text{E-03 cm/sec} \qquad v = 1.14 \text{ m}$ $C = 0.375$ $\varphi(n) = \frac{h}{(1 - n)}$ $n = 0.255$ $\eta = d_{60}/d_{10}$ $d_e = d_{17}$	$\frac{n^3}{(n-n)^2} \cdot (1+0.83^{\eta})$
82.2 83.6 86.8 89.5 100 SIZE	2 2.36 3.35 4.75 4.76	VARIABLES K - Hydraulic conductivity(cm/ g - Acceleration due to gravity(m/s v - Viscosity(mm C - Coefficient- $\varphi(n)$ - Function of porosity-	(s) (s^2) (a^2/s)
<u>DISTRIBU</u> <u>Percent</u> 0 11 89 0 0 0	<u>Size</u> +3" Gravel Sand Silt Clay	n - Porosity *- η - Uniformity- d_e - Effective grain diameter(mm d_{10} - Diameter at 10%(mm d_{17} - Diameter at 17%(mm d_{60} - Diameter at 60%(mm	n) n)

Sample ID:	MW-3
Sample Date:	6/24/2015
Interval:	20

HYDRAULIC CONDUCTIVITY CALCULATED FROM SIEVE ANALYSIS

SIEVE ANALYSIS

SAUERBREI METHOD

Percent 0 15.3 31.4 41.1 48.7 55.1 59.8 64.1 67.8 69.6	Diameter 0.038 0.075 0.15 0.212 0.3 0.425 0.6 0.85 1.18 1.4	$K = \frac{g}{v} \cdot C \cdot \varphi(n) \cdot d_e^2 \text{where}: g = 9.81 \text{ m/s}^2$ $V = 1.14 \text{ mm}^2/\text{s}$ $C = 0.375$ $\varphi(n) = \frac{n^3}{(1-n)^2}$ $n = 0.255 \cdot (1+0.83^{\eta})$ $\eta = d_{60}/d_{10}$ $d_e = d_{17}$
72.9 74.7 78.8 82.7 100	2 2.36 3.35 4.75 4.76	VARIABLES K - Hydraulic conductivity(cm/s) g - Acceleration due to gravity(m/s²) v - Viscosity(mm²/s) C - Coefficient-
SIZE <u>DISTRIBU</u> <u>Percent</u> 0 17 83 0 0	TION Size +3" Gravel Sand Silt Clay	$\varphi(n)$ - Function of porosity- n - Porosity *- η - Uniformity- d_e - Effective grain diameter(mm) d_{10} - Diameter at 10%(mm) d_{17} - Diameter at 17%(mm) d_{60} - Diameter at 60%(mm)

* May substitute measured porosity.

81631

Sample ID:	MW-4
Sample Date:	6/24/2015
Interval:	25-27

HYDRAULIC CONDUCTIVITY CALCULATED FROM SIEVE ANALYSIS

SIEV	EANA	LYSIS

SAUERBREI METHOD

Percent 0 21.8 50.4 66.2 77 85 89.9 94.1 96.5 97.1 97.8	Diameter 0.038 0.075 0.15 0.212 0.3 0.425 0.6 0.85 1.18 1.4 2	$K = \frac{g}{v} \cdot C \cdot \varphi(n) \cdot d_e^2 whe$ K = 2.06 E-03 cm/sec	re: $g = 9.81 \text{ m/s}^2$ $v = 1.14 \text{ mm}^2/C = 0.375$ $\varphi(n) = \frac{n^3}{(1-n)^2}$ $n = 0.255 \cdot (1+1)$ $\eta = d_{60}/d_{10}$ $d_e = d_{17}$	
98 98.5 99.1 100	2 2.36 3.35 4.75 4.76	$\frac{VARIABLES}{K}$ $K - Hydraulic conduct g - Acceleration due v - Viscosity C - Coefficient$	to gravity (m/s^2) (mm^2/s)	
SIZE <u>DISTRIBU</u> <u>Percent</u> 0 1 99 0 0 0	<u>TION</u> Size +3" Gravel Sand Silt Clay	$\varphi(n)$ - Function of poros n - Porosity * η - Uniformity d_e - Effective grain di d_{10} - Diameter at 10% d_{17} - Diameter at 17% d_{60} - Diameter at 60%	-	

Sample	ID:	MW-5
Sample	Date:	6/24/2015
Interval:		6-8

HYDRAULIC CONDUCTIVITY CALCULATED FROM SIEVE ANALYSIS

SIEVE ANALYSIS

SAUERBREI METHOD

<u>Percent</u> 0 17.8 46	<u>Diameter</u> 0.038 0.075 0.15	$K = 2.37 \text{F}_{-0.3} \text{ cm/sec}$	0.81 m/s ² .14 mm ² /s 0.375
59.1 68.1 75.2 80.7 85.6 89.2 90.8	0.212 0.3 0.425 0.6 0.85 1.18 1.4	n = 0	$= \frac{n^{3}}{(1-n)^{2}}$ $0.255 \cdot (1+0.83^{\eta})$ d_{60}/d_{10} d_{17}
93.3 94 95.7 96.6 100	2 2.36 3.35 4.75 4.76	K- Hydraulic conductivity g - Acceleration due to gravity v - Viscosity	(cm/s) (m/s^2) (mm^2/s)
SIZE <u>DISTRIBU</u>	TION	$C - Coefficient$ $\varphi(n) - Function of porosity$ $n - Porosity *$	-
Percent 0 3 97 0 0	<u>Size</u> +3" Gravel Sand Silt Clay	$ \begin{aligned} \eta & - \text{Uniformity} \\ d_e & - \text{Effective grain diameter} \\ d_{10} & - \text{Diameter at } 10\% \\ d_{17} & - \text{Diameter at } 17\% \\ d_{60} & - \text{Diameter at } 60\% \end{aligned} $	(mm) (mm) (mm) (mm)

Sample ID:	MW-5
Sample Date:	6/24/2015
Interval:	30

HYDRAULIC CONDUCTIVITY CALCULATED FROM SIEVE ANALYSIS

SIEVE AN	ALYSIS	SAUERBR	EIMETHOD	
Percent 0 13.5 36.6 47.5 55.5 62.3 68.1 74.4 81.3 84.5 90	Diameter 0.038 0.075 0.15 0.212 0.3 0.425 0.6 0.85 1.18 1.4 2	<i>K</i> = 1	1.98E-03 cm/sec	$g = 9.81 \text{ m/s}^{2}$ $v = 1.14 \text{ mm}^{2}/\text{s}$ $C = 0.375$ $\varphi(n) = \frac{n^{3}}{(1-n)^{2}}$ $n = 0.255 \cdot (1+0.83^{7})$ $\eta = d_{60}/d_{10}$ $d_{e} = d_{17}$
91.6 94.8 96.6 100	2.36 3.35 4.75 4.76	<u>VARIABL</u> K g v C	ES - Hydraulic conductivity - Acceleration due to grav - Viscosity - Coefficient	\hat{i}
SIZE <u>DISTRIBU</u>	TION	- 	 Function of porosity Porosity * 	-
Percent 0 3 97 0 0	<u>Size</u> +3" Gravel Sand Silt Clay	$\eta \ d_e \ d_{10} \ d_{17} \ d_{60}$	Effective grain diameterDiameter at 10%	r (mm) (mm) (mm) (mm)

Sample ID:	MW-6
Sample Date:	6/25/2015
Interval:	10-12

HYDRAULIC CONDUCTIVITY CALCULATED FROM SIEVE ANALYSIS

SIEVE ANA	ALYSIS	SAUERBREI METHOD	
Percent 0 16.1 47.2 63.4 75.8 85.3 89.9 92.9 95 95.9	Diameter 0.038 0.075 0.15 0.212 0.3 0.425 0.6 0.85 1.18 1.4	$K = 3.02 \text{E-03 cm/sec}$ $C = \varphi(n)$ n = 0	.14 mm ² /s 0.375 $= \frac{n^3}{(1-n)^2}$ 0.255 \cdot (1 + 0.83 ^{\eta}) d ₆₀ / d ₁₀
97.2 97.7 98.6 99.2 100	2 2.36 3.35 4.75 4.76	VARIABLES K - Hydraulic conductivity g - Acceleration due to gravity v - Viscosity	(cm/s) (m/s^2) (mm^2/s)
SIZE DISTRIBU	<u>TION</u>	C - Coefficient $\varphi(n)$ - Function of porosity n - Porosity *	- - -
<u>Percent</u> 0 1 99 0	Size +3" Gravel Sand Silt	η - Uniformity d_e - Effective grain diameter d_{10} - Diameter at 10% d_{17} - Diameter at 17%	- (mm) (mm) (mm)

* May substitute measured porosity.

- Diameter at 60%

 d_{60}

(mm)

0

Clay

Sample ID:	MW-6
Sample Date:	6/25/2015
Interval:	40

HYDRAULIC CONDUCTIVITY CALCULATED FROM SIEVE ANALYSIS

<u>SIEVE AN</u>	ALYSIS	SAUERBREI METHOD	
Percent 0 13.1 43.6 59.7 72.9 80.4 83.5 86.5 89.4 90.6	Diameter 0.038 0.075 0.15 0.212 0.3 0.425 0.6 0.85 1.18 1.4	K = 3.52 E-03 cm/sec $C = 0\varphi(n)n = 0$.14 mm ² /s 0.375 $= \frac{n^3}{(1-n)^2}$ 0.255 \cdot (1+0.83 ⁿ) d ₆₀ /d ₁₀
92.5 93.2 94.8 96.3 100 SIZE	2 2.36 3.35 4.75 4.76	VARIABLES K - Hydraulic conductivity g - Acceleration due to gravity v - Viscosity C - Coefficient $\varphi(n)$ - Function of porosity	(cm/s) (m/s^2) (mm^2/s)
DISTRIBU Percent 0 4 96 0 0 0	T <u>TION</u> +3" Gravel Sand Silt Clay	$n = Porosity *$ $\eta = Uniformity$ $d_e = Effective grain diameter$ $d_{10} = Diameter at 10\%$ $d_{17} = Diameter at 17\%$ $d_{60} = Diameter at 60\%$	- (mm) (mm) (mm) (mm)

Sample ID:	MW-7
Sample Date:	6/25/2015
Interval:	4-6

HYDRAULIC CONDUCTIVITY CALCULATED FROM SIEVE ANALYSIS

SIEVE ANALYSIS	SAUERBREI METHO

Percent 0 6.5 26.4 40.3 51.9 61.3 67.7 72 75 76.5 79	Diameter 0.038 0.075 0.15 0.212 0.3 0.425 0.6 0.85 1.18 1.4 2	K = 4.28E-03 cm/sec	$g = 9.81 \text{ m/s}^{2}$ $v = 1.14 \text{ mm}^{2}/\text{s}$ $C = 0.375$ $\varphi(n) = \frac{n^{3}}{(1-n)^{2}}$ $n = 0.255 \cdot (1+0.83^{\eta})$ $\eta = d_{60}/d_{10}$ $d_{e} = d_{17}$
80.1 82.8 86.2 100	2.36 3.35 4.75 4.76	VARIABLES K - Hydraulic conductivity g - Acceleration due to gra v - Viscosity C - Coefficient	
SIZE <u>DISTRIBU</u>	TION	$\varphi(n)$ - Function of porosity n - Porosity *	
<u>Percent</u> 0 14 86 0 0	Size +3" Gravel Sand Silt Clay	$ \begin{aligned} \eta & - \text{ Uniformity} \\ d_e & - \text{ Effective grain diamete} \\ d_{10} & - \text{ Diameter at } 10\% \\ d_{17} & - \text{ Diameter at } 17\% \\ d_{60} & - \text{ Diameter at } 60\% \end{aligned} $	r (mm) (mm) (mm) (mm)

Sample ID:	MW-7
Sample Date:	6/25/2015
Interval:	11

HYDRAULIC CONDUCTIVITY CALCULATED FROM SIEVE ANALYSIS

SIEVE AN	ALYSIS	SAUERBREI METHOD	
Percent 0 10.3 27.7 40.2 51.2 61.3 68.8 74.2 77.9 79.8 83	Diameter 0.038 0.075 0.15 0.212 0.3 0.425 0.6 0.85 1.18 1.4 2	$K = 3.00 \text{E-03 cm/sec}$ $C = \varphi(n)$ n = 0 $\eta = 0$ $d_e = 0$.14 mm ² /s 0.375 $= \frac{n^3}{(1-n)^2}$ 0.255 \cdot (1 + 0.83 ^{\eta}) d ₆₀ / d ₁₀
84.6 87.9 91.5 100	2.36 3.35 4.75 4.76	VARIABLES K - Hydraulic conductivity g - Acceleration due to gravity v - Viscosity C - Coefficient	(cm/s) (m/s^2) (mm^2/s)
SIZE <u>DISTRIBU</u>	TION	$\varphi(n)$ - Function of porosity n - Porosity *	_
<u>Percent</u> 0 9 91 0 0	Size +3" Gravel Sand Silt Clay	$ \begin{aligned} \eta & - \text{ Uniformity} \\ d_e & - \text{ Effective grain diameter} \\ d_{10} & - \text{ Diameter at } 10\% \\ d_{17} & - \text{ Diameter at } 17\% \\ d_{60} & - \text{ Diameter at } 60\% \end{aligned} $	- (mm) (mm) (mm)

Sample ID:	MW-8
Sample Date:	6/29/2015
Interval:	8-10

HYDRAULIC CONDUCTIVITY CALCULATED FROM SIEVE ANALYSIS

SIEVE ANALYSIS

SAUERBREI METHOD

Percent 0 15.2 41.7 57.8 69.7 78 82.9 86.6 89.1 90.1 91.5	Diameter 0.038 0.075 0.15 0.212 0.3 0.425 0.6 0.85 1.18 1.4 2	1	$\frac{g}{v} \cdot C \cdot \varphi(n) \cdot d_e^2$ 2.86E-03 cm/se	$v = 1$ $C = \varphi(n)$ $n = 0$	14 mm ² /s 0.375 $= \frac{n^{3}}{(1-n)^{2}}$ 0.255 · (1 + 0.83 ⁿ) d ₆₀ /d ₁₀
92 93 94.2 100	2.36 3.35 4.75 4.76	<u>VARIABL</u> K g	 Hydraulic co Acceleration 	•	(cm/s) (m/s^2)
SIZE DISTRIBU		$v \\ C \\ \varphi(n) \\ n$	 Viscosity Coefficient Function of Porosity * 	porosity	(mm ² /s)
<u>Percent</u> 0 6 94 0 0	Size +3" Gravel Sand Silt Clay	$\eta \ d_e \ d_{10} \ d_{17} \ d_{60}$	- Diameter at 1	10% 17%	- (mm) (mm) (mm) (mm)

Sample ID:	MW-8
Sample Date:	6/29/2015
Interval:	15-17

HYDRAULIC CONDUCTIVITY CALCULATED FROM SIEVE ANALYSIS

SIEVE ANALYSIS

SAUERBREI METHOD

Percent 0 18.3 45.3 61.9 73 80.3 84.5 88.4 91.4 92.7	Diameter 0.038 0.075 0.15 0.212 0.3 0.425 0.6 0.85 1.18 1.4 2	K = 2.43 E-03 cm/sec C φ n η	$= 9.81 \text{ m/s}^{2}$ $= 1.14 \text{ mm}^{2}/\text{s}$ $= 0.375$ $(n) = \frac{n^{3}}{(1-n)^{2}}$ $= 0.255 \cdot (1+0.83^{7})$ $= d_{60}/d_{10}$ $= d_{17}$
95 95.9 97.5 98.6 100	2 2.36 3.35 4.75 4.76	VARIABLES K - Hydraulic conductivity g - Acceleration due to gravi v - Viscosity	(cm/s) (m/s2) (mm2/s)
SIZE <u>DISTRIBU</u>	<u>TTION</u>	$C - Coefficient$ $\varphi(n) - Function of porosity$ $n - Porosity *$	-
<u>Percent</u> 0 1 99 0 0	<u>Size</u> +3" Gravel Sand Silt Clay	$ \begin{aligned} \eta & - \text{ Uniformity} \\ d_e & - \text{ Effective grain diameter} \\ d_{10} & - \text{ Diameter at 10\%} \\ d_{17} & - \text{ Diameter at 17\%} \\ d_{60} & - \text{ Diameter at 60\%} \end{aligned} $	- (mm) (mm) (mm)

	ulate Help	C	LBG	and been too be and only a lot of the second se		and a second state of the
5161	ve Analysis	Company:	LBG			
% Finer	Grain Dia. (mm	-	1			
0	0.038	Sample ID:	And supply provide a second se	Measured Po	rosity:	_)
28.1	0.074	Sample Interval:	parameters and and an end and an end of the	Compaction (H	azen):	- If Knowr
49.2	0.150	Sample Date:	6/23/15	Compaction	(Uma):	J
62.6	0.211			Results		
71.7	0.297	P 0% +3"	5% Gravel	95% Sand	0% Silt	0% Clay
78.6	0.419	R	Hydraulic	Effective Grain	Uniformity [n] :	- 4100
83.3	0.594	N	Conductivity (cm/sec)	Diameter [de] (mm)		
87.0	0.841	T Method	(cm/sec)	(mm)	Method Ap	plicability
89.5	1.191	T Hazen	2.56E-03	0.0482	0.1 < de < 3, and r	n < 5
90.4	1.410	Slichter	7.86E-04	0.0482	0.01 < de < 5	
92.1	1.999	Terzaghi	1.36E-03	0.0482	large-grain sands	
92.7	2.380	T Bever	2.50E-03	0.0482	0.06 < de < 0.6. ar	ul 1 4 m 4 20
93.8	3.353					
95.4	4.750	🔽 Sauerbrei	1.39E-03	0.0569	sand and sandy cl	ay, and dia. < 0.5
100	4.76	Kruger	5.06E-04	0.1190	medium-grain sand	ls, and n > 5
		Kozeny	1.11E-02	0.1079	large-grain sands	
		T Zunker	4.71E-03	0.1115	fine and medium-g	rain sands
		l Uma	N/A	0.0482	sandy aquifers	
		USBR	6.66E-04	0.0611	medium-grain sand	ls, and n < 5
		EasySolve Lo	-		-	

•		SizeP	erm - Hydra	aulic Conducti	ivity from Sieve	Analysis	- 🗆 🗙
	culate Help ve Analysis		Company:	LBG			
% Finer	Grain Dia.	(mm)	Address:	-			
0	0.038		Sample ID:	MW-1	Measured Po	rosity:	_)
15.0	0.075	San	nple Interval:	20	Compaction (H	azen):	- If Known
31.6	0.15	9	Gample Date:	6/23/2015	Compaction ((Uma):	_)
47.5	0.212				Results		
61.7	0.3	P	0% +3"	5% Gravel	95% Sand	0% Silt	0% Clay
74.4	0.425	R		Hydraulic	Effective Grain	Uniformity [n] =	4 813
81.8	0.6	N	Method	Conductivity (cm/sec)	Diameter [de] (mm)	Method Ap	
85.9	0.85	<u> </u>	memoa	[6007 800]		Method Ap	plicability
88.4	1.18	Г	Hazen	3.67E-03	0.0598	0.1 < de < 3, and n	< 5
89.5	1.4	Г	Slichter	1.06E-03	0.0598	0.01 < de < 5	
91.3	2	Г	Terzaghi	1.82E-03	0.0598	large-grain sands	
92.0	2.36	Г	Bever	3.72E-03	0.0598	0.06 < de < 0.6. an	d1 < n < 20
93.7	3.35	-	Sauerbrei	2.42E-03	0.0815		
94.9	4.75	1				sand and sandy cla	
100	4.76	Г	Kruger	8.56E-04	0.1618	medium-grain sand	s, and n > 5
	-	Г	Kozeny	1.77E-02	0.1482	large-grain sands	
		Г	Zunker	7.76E-03	0.1526	fine and medium-gr	ain sands
		Г	Uma	N/A	0.0598	sandy aquifers	
		Г	USBR	1.73E-03	0.0924	medium-grain sand	s, and n < 5
		V	EasySolve Lo	go			

0			erm - Hydra	aulic Conduct	ivity from Sieve	Analysis	×
	ulate Help						
Sie	ve Analysis		Company:	LBG			
% Finer	Grain Dia.	(mm)	Address:	1	antar'		and a second sec
0	0.038		Sample ID:	MW-2	Measured Po	rosity:	_)
11.7	0.075		nple Interval:	4-6	Compaction (H	azen):	- If Known
23.7	0.15		Sample Date:	6/23/2015	Compaction	(Uma):	ļ
33.4	0.212				Results		
42.3	0.3	P	0% +3"	23% Gravel	77% Sand	0% Silt	0% Clay
51.2	0.425	R		Hydraulic	Effective Grain	Uniformity [n] =	10.029
58.1	0.6	Ņ	Method	Conductivity (cm/sec)	Diameter [de] (mm)		
63.3	0.85	<u> </u>	Method	(Cinv sec)	()	Method App	licability
66.8	1.18	Г	Hazen	3.20E-03	0.0679	0.1 < de < 3, and n	< 5
68.3	1.4	Г	Slichter	7.13E-04	0.0679	0.01 < de < 5	
70.8	2	Г	Terzaghi	1.14E-03	0.0679	large-grain sands	
72.0	2.36	-	Beyer	4.05E-03	0.0679	0.06 < de < 0.6, and	120220
74.5	3.35						
77.5	4.75	1	Sauerbrei	1.71E-03	0.1019	sand and sandy cla	y, and dia. < 0.5
100	4.76	Г	Kruger	1.04E-03	0.2173	medium-grain sands	, and n > 5
		Г	Kozeny	1.45E-02	0.1989	large-grain sands	
		Г	Zunker	7.76E-03	0.2048	fine and medium-gra	ain sands
		Г	Uma	N/A	0.0679	sandy aquifers	
		Г	USBR	3.22E-03	0.1211	medium-grain sands	, and n < 5
	1	V	EasySolve Log	go			

SizePerm - Hydraulic Conductivity from Sieve Analysis

- 🗆 🗙

Sie	ve Analysis		Company:	LBG	107.00000000000000000000000000000000000		
% Finer	Grain Dia.	(mm)	Address:				
0	0.038	<u> </u>	Sample ID:	MW-2	 Measured Po	orosity:	-)
11.7	0.075	Sample Interval: 1		17 Compaction (Ha		azen):	- If Knowr
28.4	0.15	9	Sample Date:	6/23/2015	Compaction	(Uma):	
44.4	0.212				Results		
57.2	0.3	Р	0% +3"	11% Gravel	89% Sand	0% Silt	0% Clay
65.5	0.425	R	-	Hydraulic	Effective Grain	Uniformity [n] =	- 4 966
70.7	0.6	N		Conductivity	Diameter [de]		
74.4	0.85	<u> </u>	Method	(cm/sec)	(mm)	Method App	plicability
77.6	1.18	1	Hazen	4.67E-03	0.0679	0.1 < de < 3, and n	< 5
79.3	1.4	Г	Slichter	1.33E-03	0.0679	0.01 < de < 5	
82.2	2	-	Terzaghi	2.29E-03	0.0679	large-grain sands	
83.6	2.36	-	-				11
86.8	3.35	1	Beyer	4.77E-03	0.0679	0.06 < de < 0.6, an	idi < n < 20
89.5	4.75	Г	Sauerbrei	3.07E-03	0.0935	sand and sandy cla	ay, and dia. < 0.5
100	4.76	Γ	Kruger	1.09E-03	0.1842	medium-grain sand:	s, and n > 5
		Г	Kozeny	2.22E-02	0.1690	large-grain sands	
		Г	Zunker	9.83E-03	0.1739	fine and medium-gr	ain sands
LANCAULA SPILLING		Г	Uma	N/A	0.0679	sandy aquifers	
	·	Г	USBR	2.36E-03	0.1058	medium-grain sand	s, and n < 5
		V	EasySolve Lo	00			

•		SizeP	erm - Hydra	aulic Conduct	ivity from Sieve	Analysis	- 🗆 🗡
	:ulate Help ve Analysis		Company:	LBG			
% Finer	Grain Dia.	(mm)	Address:		3		
0	0.038		Sample ID:	MW-3	Measured Po	rosity:	
15.1	0.075	San	nple Interval:	6-8	Compaction (H	azen):	- If Known
31.8	0.15	Sample Date:		6/24/2015	24/2015 Compaction (Uma):		
44.8	0.212				Results		
55.5	0.3	P	0% +3"	10% Gravel	90% Sand	0% Silt	0% Clay
64.5	0.425	R		Hydraulic	Effective Grain	Uniformity (n) =	5 990
71.0	0.6	N	Method	Conductivity (cm/sec)	Diameter [de] (mm)	Method Apr	
76.0	0.85	<u> </u>	Method	[6117 300]		method Apt	nicability
79.6	1.18	Г	Hazen	3.28E-03	0.0596	0.1 < de < 3, and n	< 5
81.3	1.4	Г	Slichter	8.69E-04	0.0596	0.01 < de < 5	
83.9	2	Г	Terzaghi	1.47E-03	0.0596	large-grain sands	
85.3	2.36	Г	Beyer	3.53E-03	0.0596	0.06 < de < 0.6, an	d 1 < n < 20
87.4	3.35	-	Sauerbrei	1.88E-03	0.0812	sand and sandy cla	
89.8	4.75	-					
100	4.76	1	Kruger	8.48E-04	0.1712	medium-grain sand:	s, and n > 5
		Г	Kozeny	1.55E-02	0.1563	large-grain sands	
		Г	Zunker	7.22E-03	0.1611	fine and medium-gr	ain sands
		Г	Uma	N/A	0.0596	sandy aquifers	
		Г	USBR	1.71E-03	0.0919	medium-grain sand:	s, and n < 5
		V	EasySolve Lo	go			

.

SizePerm - Hydraulic Conductivity from Sieve Analysis

- 🗆 🗙

Sie	ve Analysis		Company:	LBG			And the second
% Finer	Grain Dia. (mn	n)	Address:				-
0	0.038		Sample ID:	MW-3	Measured Po	orosity:	
15.3	0.075		ple Interval:	Contraction of the second seco	Compaction (H	azen):	- If Known
31.4	0.15	S	ample Date:	6/24/2015	Compaction	(Uma):	J
41.1	0.212	-			Results /		
48.7	0.3	P	0% +3"	17% Gravel	83% Sand	0% Silt	0% Clay
55.1	0.425	R		Hydraulic	Effective Grain	Uniformity [n] =	10.290
59.8	0.6	N T	Method	Conductivity (cm/sec)	Diameter [de] (mm)	Method Appl	io abilitu
64.1	0.85	-	method	four sool		Method Appl	icability
67.8	1.18	Г	Hazen	2.40E-03	0.0593	0.1 < de < 3, and n <	: 5
69.6	1.4	Г	Slichter	5.31E-04	0.0593	0.01 < de < 5	
72.9	2	Г	Terzaghi	8.44E-04	0.0593	large-grain sands	
74.7	2.36	-	Beyer	3.06E-03	0.0593	0.06 < de < 0.6. and	1 1 1 2 2 0
78.8	3.35	-					
82.7	4 75	1	Sauerbrei	1.05E-03	0.0807	sand and sandy clay	, and dia. < 0.5
100	4.76	Г	Kruger	7.40E-04	0.1839	medium-grain sands,	and n > 5
		Г	Kozeny	9.98E-03	0.1672	large-grain sands	
		Г	Zunker	5.41E-03	0.1726	fine and medium-grai	n sands
		Г	Uma	N/A	0.0593	sandy aquifers	
		Г	USBR	1.70E-03	0.0918	medium-grain sands,	and n < 5
		V	EasySolve Lo	00			

	ulate Help ve Analysis		Company:	LBG			
% Finer	Grain Dia. (mm)	Address:				
0	0.038		Sample ID:	MW-4	Measured Po	rosity:	_)
6.4	0.075	San	nple Interval:	4-6	Compaction (H	azen):	- If Know
11.6	0.15	Sample Date:		6/24/2015	Compaction (Uma):		_)
15.5	0.212				Results		
19.5	0.3	P	0% +3"	41% Gravel	59% Sand	0% Silt	0% Clay
23.8	0.425	R		Hydraulic	Effective Grain	Uniformity [n] =	39,196
28.1	0.6	N	Method	Conductivity (cm/sec)	Diameter [de] (mm)	Method App	
32.6	0.85	_	MECHOU				-
37.2	1.18	Г	Hazen	7.22E-03	0.1212	0.1 < de < 3, and n	< 5
39.8	1.4	Г	Slichter	1.42E-03	0.1212	0.01 < de < 5	
45.2	2	Г	Terzaghi	2.02E-03	0.1212	large-grain sands	
47.7 52.9	2.36	Г	Beyer	8.38E-03	0.1212	0.06 < de < 0.6, and	d1 < n < 20
59.5	4.75	-	Sauerbrei	5.64E-03	0.2415	sand and sandy cla	v. and dia. < 0.5
100	4.75	-	Kruger	2.85E-03	0.4066	medium-grain sands	
	1.10	-					, anu n 2 0
		1	Kozeny	2.99E-02	0.3736	large-grain sands	
		Г	Zunker	1.84E-02	0.3843	fine and medium-gra	ain sands
		Г	Uma	N/A	0.1212	sandy aquifers	
		1000	USBB	2.84E-02	0.3124	medium-grain sands	and a dE

0		SizeP	erm - Hydra	aulic Conduct	ivity from Sieve	Analysis -	. 🗆 🗙
	culate Help			1			
Sie	ve Analysis		Company:	LBG			
% Finer	Grain Dia.	(mm)	Address:				
0	0.038		Sample ID:	M₩-4	Measured Po	rosity:)
21.8	0.075	San	nple Interval:	25-27	Compaction (H	azen):	- If Known
50.4	0.15	5	ample Date:	6/24/2015	Compaction	(Uma):	- J
66.2	0.212			X	Results		
77.0	0.3	Р	0% +3"	1% Gravel	99% Sand	0% Silt	0% Clay
85.0	0.425	R		Hydraulic	Effective Grain	Uniformity (n) =	3 566
89.9	0.6	N	M . 1	Conductivity (cm/sec)	Diameter [de] (mm)		
94.1	0.85	<u>T</u>	Method	(cm/sec)	(mm)	Method Appli	capility
96.5	1.18	Г	Hazen	3.15E-03	0.0519	0.1 < de < 3, and n <	5
97.1	1.4	Γ	Slichter	1.02E-03	0.0519	0.01 < de < 5	
97.8	2	Г	Terzaghi	1.77E-03	0.0519	large-grain sands	
98.0	2.36	-		2.99E-03	0.0519	0.06 < de < 0.6. and	1 4 1 4 20
98.5	3.35	1	Beyer				
99.1	4.75	F	Sauerbrei	2.06E-03	0.0646	sand and sandy clay	. and dia. < 0.5
100	4.76	Г	Kruger	5.84E-04	0.1233	medium-grain sands,	and n > 5
		Г	Kozeny	1.37E-02	0.1118	large-grain sands	
		Г	Zunker	5.62E-03	0.1155	fine and medium-grai	n sands
		Г	Uma	N/A	0.0519	sandy aquifers	
		Г	USBR	9.39E-04	0.0709	medium-grain sands,	and n < 5
		V	EasySolve Lo	go			

% Finer 0	Grain Dia. (mm)		LBG			***************************************
0	uran Dia. (ininj	- Address:				
	0.038	Sample ID:	MW-5	Measured Po	rosity:	_)
17.8	0.075 \$	ample Interval:	6-8	Compaction (H	azen):	- If Know
46.0	0.15	Sample Date:	6/24/2015	Compaction	(Uma):)
59.1	0.212			Results		
68.1		P 0% +3"	3% Gravel	97% Sand	0% Silt	0% Clay
75.2	114/0	R	Hydraulic	Effective Grain	Uniformity [n]	= 3.942
80.7		N T Method	Conductivity (cm/sec)	Diameter [de] (mm)		
85.6	0.85 _	i methou	(CHIN SEC)	()	Method Ap	plicability
89.2	1.18	Hazen	3.48E-03	0.0557	0.1 < de < 3, and 1	n < 5
90.8	1.4	Slichter	1.08E-03	0.0557	0.01 < de < 5	
93.3	2	Terzaghi	1.88E-03	0.0557	large-grain sands	
94.0	2.36	Bever	3.37E-03	0.0557	0.06 < de < 0.6. a	nd 1 < n < 20
95.7	3.35					
96.6	4.75	Sauerbrei	2.37E-03	0.0727	sand and sandy c	lay, and dia. < 0.5
100	4.76 ľ	Kruger	7.06E-04	0.1392	medium-grain sand	ls, and n > 5
	r	Kozeny	1.58E-02	0.1262	large-grain sands	
	r	Zunker	6.64E-03	0.1304	fine and medium-g	rain sands
	r	Uma	N/A	0.0557	sandy aquifers	
	r	USBR	1.21E-03	0.0792	medium-grain sand	ls.and n < 5

	ulate Help			-			
Siev	ve Analysis		Company:	LBG			
% Finer	Grain Dia.	(mm)	Address:		-		
0	0.038		Sample ID:	MW-5	Measured Po	prosity:]
14.0	0.075		mple Interval:	and the second	Compaction (H	azen):	- If Know
32.5	0.15		Sample Date:	6/24/2015	Compaction	(Uma):	J
42.9	0.212				Results		
51.1	0.3	P	0% +3"	16% Gravel	84% Sand	0% Silt	0% Clay
57.7	0.425	R		Hydraulic	Effective Grain	Uniformity (n)	= 8.065
62.7	0.6	N	Method	Conductivity (cm/sec)	Diameter [de] (mm)	Method A	pplicability
66.8	0.85		•			the second second second	
70.2	1.18	Г	Hazen	2.99E-03	0.0618	0.1 < de < 3, and	n < 5
72.0	1.4	Г	Slichter	7.12E-04	0.0618	0.01 < de < 5	
74.9	2	Г	Terzaghi	1.17E-03	0.0618	large-grain sands	
80.0	3.35	Г	Beyer	3.53E-03	0.0618	0.06 < de < 0.6, a	and 1 < n < 20
83.8	4 75	Г	Sauerbrei	1.45E-03	0.0839	sand and sandy d	clay, and dia. < 0.
100	4.76	Г	Kruger	8.20E-04	0.1824	medium-grain san	nds, and n > 5
		Г	Kozeny	1.26E-02	0.1660	large-grain sands	
		Г	Zunker	6.40E-03	0.1713	fine and medium-	grain sands
		Г	Uma	N/A	0.0618	sandy aquifers	
		Г	USBR	1.79E-03	0.0939	medium-grain san	nds, and n < 5
		V	EasySolve Lo	10			

Sie	ve Analysis		Company:	LBG			
% Finer	Grain Dia. ((mm)	Address:			-	
0	0.038		Sample ID:	MW-5	Measured Po	rosity:	
13.5	0.075		nple Interval:	30	Compaction (H	azen):	- If Know
36.6	0.15	5	Sample Date:	6/24/2015	Compaction	(Uma):	J
47.5	0.212				Results		
55.5	0.3	P	0% +3"	3% Gravel	97% Sand	0% Silt	0% Clay
62.3	0.425	R		Hydraulic	Effective Grain	Uniformity (n) =	= 6.008
58.1	0.6	N	Method	Conductivity (cm/sec)	Diameter [de] (mm)		
74.4	0.85	<u> </u>	method	(6117 866)		Method App	plicability
81.3	1.18	F	Hazen	3.64E-03	0.0629	0.1 < de < 3, and r	i < 5
84.5	1.4	Г	Slichter	9.65E-04	0.0629	0.01 < de < 5	
90.0	2	Г	Terzaghi	1.63E-03	0.0629	large-grain sands	
91.6	2.36	-	Beyer	3.92E-03	0.0629	0.06 < de < 0.6. ar	d12n220
94.8	3.35	3					
96.6	4.75	1	Sauerbrei	1.98E-03	0.0833	sand and sandy cla	ay, and dia. < 0.
100	4.76	Г	Kruger	8.31E-04	0.1695	medium-grain sand	s, and n > 5
		Г	Kozeny	1.50E-02	0.1542	large-grain sands	
		Г	Zunker	7.03E-03	0.1591	fine and medium-gr	ain sands
		Г	Uma	N/A	0.0629	sandy aquifers	
		Γ	USBR	1.67E-03	0.0912	medium-grain sand	s, and n < 5
		V	EasySolve Lo	90			

9		SizeP	erm - Hydra	aulic Conduct	ivity from Sieve	Analysis •	
	culate Help		Company:	LBG			
% Finer	Grain Dia.	(mm)	Address:				
0	0.038	()	Sample ID:	MW-6	 Measured Po	rosity:	- 1
16.1	0.075	San	nple Interval:	10-12	Compaction (H	azen):	- If Known
47.2	0.15		Sample Date:	6/25/2015	Compaction ((Uma):	-)
63.4	0.212				Results		
75.8	0.3	P	0% +3"	1% Gravel	99% Sand	0% Silt	0% Clay
85.3	0.425	R		Hydraulic	Effective Grain	Uniformity [n] =	3 401
89.9	0.6	N	Method	Conductivity (cm/sec)	Diameter [de] (mm)	Method Appl	
92.9	0.85	<u> </u>					-
95.0	1.18	Г	Hazen	4.00E-03	0.0580	0.1 < de < 3, and n <	:5
95.9	1.4	Г	Slichter	1.31E-03	0.0580	0.01 < de < 5	
97.2 97.7	2	Γ	Terzaghi	2.29E-03	0.0580	large-grain sands	
98.6	3.35	Г	Beyer	3.76E-03	0.0580	0.06 < de < 0.6, and	1 < n < 20
99.2	4.75	Г	Sauerbrei	3.02E-03	0.0765	sand and sandy clay	, and dia. < 0.§
100	4.76	Г	Kruger	7.12E-04	0.1346	medium-grain sands,	and n > 5
		Г	Kozeny	1.71E-02	0.1224	large-grain sands	
		Г	Zunker	6.95E-03	0.1263	fine and medium-grai	in sands
		Г	Uma	N/A	0.0580	sandy aquifers	
		Г	USBR	1.30E-03	0.0818	medium-grain sands,	and n < 5
		V	EasySolve Lo	go			

	ulate Help ve Analysis	Company:		LBG			
% Finer	Grain Dia. (mm)	Address:				
0	0.038		Sample ID:	MW-6	Measured Po	rosity:	
13.1	0.075		nple Interval:	1	Compaction (H	azen):	- If Knowr
43.6	0.15		Sample Date:	6/25/2015	Compaction	(Uma):	-)
59.7	0.212				Results		
72.9	0.3	P	0% +3"	4% Gravel	96% Sand	0% Silt	0% Clay
80.4	0.425	R		Hydraulic	Effective Grain	Uniformity [n] =	3 346
83.5	0.6	N	Markad	Conductivity (cm/sec)	Diameter [de] (mm)		
86.5	0.85	<u> </u>	Method	(cm/sec)	(mm)	Method App	licability
89.4	1.18	Г	Hazen	4.88E-03	0.0639	0.1 < de < 3, and n	< 5
90.6	1.4	Г	Slichter	1.61E-03	0.0639	0.01 < de < 5	
92.5	2	-	Terzaghi	2.81E-03	0.0639	large-grain sands	
93.2	2.36	-	-				
94.8	3.35	1	Beyer	4.58E-03	0.0639	0.06 < de < 0.6, and	1 < n < 20
96.3	4.75	Г	Sauerbrei	3.52E-03	0.0820	sand and sandy cla	y, and dia. < 0.5
100	4.76	Г	Kruger	8.54E-04	0.1468	medium-grain sands	, and n > 5
		Г	Kozeny	2.07E-02	0.1336	large-grain sands	
		Г	Zunker	8.37E-03	0.1379	fine and medium-gra	in sands
		Г	Uma	N/A	0.0639	sandy aquifers	
		Г	USBR	1.53E-03	0.0877	medium-grain sands	, and n < 5
		V	EasySolve Lo	70		-	

-SizePerm - Hydraulic Conductivity from Sieve Analysis File Calculate Help Company: LBG **Sieve Analysis** Address: Grain Dia. (mm) % Finer Sample ID: MW-7 Measured Porosity: 0 0.038 Sample Interval: 4-6 6.5 0.075 Compaction (Hazen): If Known 26.4 Sample Date: 6/25/2015 Compaction (Uma): 0.15 40.3 Results 0.212 51.9 0.3 14% Gravel 0% +3" 86% Sand P R 0% Silt 0% Clay 61.3 0.425 Hydraulic Conductivity Effective Grain Diameter [de] (mm) Ī Uniformity [n] = 4.780 67.7 0.6 N Method (cm/sec) Method Applicability 72.0 0.85 75.0 1.18 -7.40E-03 0.0847 0.1 < de < 3, and n < 5 Hazen 76.5 1.4 Slichter 2.14E-03 0.0847 0.01 < de < 5 79.0 2 Г Terzaghi 3.68E-03 0.0847 large-grain sands 80.1 2.36 7.48E-03 0.0847 0.06 < de < 0.6, and 1 < n < 20 Beyer 82.8 3.35 Sauerbrei 4.28E-03 0.1081 sand and sandy clay, and dia. < 0.5 86.2 4.75 4.76 Kruger 1.49E-03 0.2131 medium-grain sands, and n > 5 Kozeny 3.11E-02 0.1959 large-grain sands 1.36E-02 0.2015 fine and medium-grain sands Zunker Uma N/A 0.0847 sandy aquifers USBR 3.15E-03 0.1200 medium-grain sands, and n < 5 V EasySolve Logo

	ulate Help ve Analysis		Company:	LBG			
% Finer	Grain Dia.	(mm)	Address:	1.			
0	0.038		Sample ID:	MW-7	Measured Po	rosity:	<u> </u>
10.3	0.075	Sample Interval: Sample Date:		3	Compaction (H	azen):	- If Know
27.7	0.15			6/25/2015	Compaction ((Uma):	J
40.2	0.212				Results		
51.2	0.3	P	0% +3"	9% Gravel	91% Sand	0% Silt	0% Clay
61.3	0.425	R		Hydraulic	Effective Grain	Uniformity (n) =	5.527
68.8	0.6	N	Method	Conductivity (cm/sec)	Diameter [de] (mm)	Method App	
74.2	0.85	<u> </u>	Method	(000000)	,	mediod Abb	licability
77.9	1.18	Г	Hazen	5.19E-03	0.0735	0.1 < de < 3, and n	< 5
79.8	1.4	Г	Slichter	1.42E-03	0.0735	0.01 < de < 5	
83.0	2	Г	Terzaghi	2.42E-03	0.0735	large-grain sands	
84.6	2.36	Г	Beyer	5.46E-03	0.0735	0.06 < de < 0.6, and	11 < n < 20
87.9 91.5	3.35 4.75	_	Sauerbrei	3.00E-03	0.0979	sand and sandy cla	u and dia ∢ 0.
100	4.75	- -	Kruger	1.16E-03	0.1959	medium-grain sands	
nos	4.10	,	-				, anu n 2 o
and the state of a second		1	Kozeny	2.23E-02	0.1796	large-grain sands	
		Г	Zunker	1.02E-02	0.1848	fine and medium-gra	iin sands
		Г	Uma	N/A	0.0735	sandy aquifers	
		Г	USBR	2.60E-03	0.1104	medium-grain sands	, and n < 5
		V	EasySolve Lo	00			

	ulate Help ve Analysis		Company:	LBG			8
% Finer	Grain Dia.	(mm)	Address:				
0	0.038		Sample ID:	MW-8	Measured Po	rosity:	_)
15.2	0.075	San	ple Interval:	8-10	Compaction (H	azen):	- If Knowr
41.7	0.15	9	ample Date:	6/29/2015	Compaction ((Uma):	— J
57.8	0.212				Results		
69.7	0.3	Р	0% +3"	6% Gravel	94% Sand	0% Silt	0% Clay
78.0	0.425	R		Hydraulic	Effective Grain	Uniformity (n	l = 3.803
82.9	0.6	N	Method	Conductivity (cm/sec)	Diameter [de] (mm)		pplicability
86.6	0.85	<u> </u>	mecnoa	(cm/scc)		method A	ppicapility
89.1	1.18	Г	Hazen	4.02E-03	0.0594	0.1 < de < 3, and	ln < 5
90.1	1.4	Г	Slichter	1.27E-03	0.0594	0.01 < de < 5	
91.5	2	Г	Terzaghi	2.21E-03	0.0594	large-grain sands	1
92.0	2.36	-	Beyer	3.86E-03	0.0594	0.06 < de < 0.6.	
93.0	3.35	-				Contract of States of Contract	
94.2	4.75	1	Sauerbrei	2.86E-03	0.0786	-	clay, and dia. < 0.5
100	4.76	Г	Kruger	7.94E-04	0.1463	medium-grain sar	nds, and n > 5
		Г	Kozeny	1.82E-02	0.1332	large-grain sands	
	-	Г	Zunker	7.57E-03	0.1374	fine and medium	grain sands
		Г	Uma	N/A	0.0594	sandy aquifers	
Contraction and the second second		Г	USBR	1.43E-03	0.0850	medium-grain sar	nds, and n < 5
		V	EasySolve Lo	0			

	ulate Help									
Sie	ve Analysis		Company:	LBG						
% Finer	Grain Dia. (mm)	Address:							
0	0.038		Sample ID:	MW-8	Measured Po	rosity:)			
18.3	0.075	San	nple Interval:	15-17	Compaction (H	azen):	- If Known			
45.3	0.15	5	Sample Date:	6/29/2015	Compaction	(Uma):)			
61.9	0.212	8			Results					
73.0	0.3	P	0% +3"	1% Gravel	99% Sand	0% Silt	0% Clay			
80.3	0.425	R		Hydraulic	Effective Grain	Uniformity (n) =	3 698			
84.5	0.6	N	Method	Conductivity (cm/sec)	Diameter [de] (mm)					
88.4	0.85	<u> </u>	Method	[cint scc]		Method Applicability				
91.4	1.18	Г	Hazen	3.50E-03	0.0551	0.1 < de < 3, and n < 5				
92.7	1.4	Г	Slichter	1.11E-03	0.0551	0.01 < de < 5				
95.0	2		Terzaghi	1.94E-03	0.0551	large-grain sands				
95.9	2.36	-	Beyer	3.34E-03	0.0551	0.06 < de < 0.6, and 1	1			
97.5	3.35	1								
98.6	4.75		Sauerbrei	2.43E-03	0.0715	sand and sandy clay,	and dia. < 0.5			
100	4.76	Г	Kruger	6.89E-04	0.1352	medium-grain sands, a	and n > 5			
		Г	Kozeny	1.59E-02	0.1229	large-grain sands				
		Г	Zunker	6.59E-03	0.1269	fine and medium-grain	sands			
		Г	Uma	N/A	0.0551	sandy aquifers				
		Г	USBR	1.18E-03	0.0783	medium-grain sands, a	and n < 5			
			EasySolve Lo							

BETA TUBE SAMPLES

LEGGETTE, BRASHEARS & GRAHAM, INC.

DR. CLARENCE WELTI, P.E., P.C.

GEOTECHNICAL ENGINEERING

227 Williams Street · P.O. Box 397 Glastonbury, CT 06033-0397

(860) 633-4623 / FAX (860) 657-2514

June 3, 2015

Mr. Robert M. Baglini, P. E. BETA Group, Inc.

Re: Permeability Testing Soils from Test Pits at Waste Water Disposal Site at Lutheran Home of Southbury, CT

Dear Mr. Baglini:

Herewith are the results of permeability tests on insitu soil samples taken at the subject site. Eight soil samples were taken during two days of test pit exploration. Two inch diameter tubes were driven into the soils at directed locations

If you have any questions please call me.

Very truly yours,

Clarence Welti, PhD, P.E. Pres. Dr. Clarence Welti, P. E., P. C.

LUTHERAN HOME SOUTHBURY, CT

Permeability Test Results

Location/Depth	Thickness	Max Head	Permeability
B-1 @ 7 feet	2.75"	7"	1.54 feet/day
B-2 @ 8 feet	3"	7"	0.26 feet/day
B-3 @ 5.5 feet	3"	7"	0.50 feet/day
B-2 @ 5.5 feet	3"	7"	0.81 feet/day
B-5 @ 4 feet	3.25"	7"	0.67 feet/day
B-5 @ 112"	3.5"	7"	1.53 feet/day
B-9 @ 3.5 feet	2.5"	7"	0.61 feet/day
B-9 @ 7.5 feet	2"	7"	0.65 feet/day

Notes: 1.Samples were obtained by driving a 2" diameter (1/16" wall) tube into the undisturbed soil surface. Samples were tested in the tubes with the falling head type permeability test.

2. All tubes were sealed immediately after extraction.

3. Laboratory testing done was within 3 days of sample extraction.

DR. CLARENCE WELTI, P.E., P.C.

GEOTECHNICAL ENGINEERING

227 Williams Street · P.O. Box 397 Glastonbury, CT 06033-0397

(860) 633-4623 / FAX (860) 657-2514

September 15, 2015

Mr. Robert M. Baglini, P. E. BETA Group, Inc.

Re: Permeability Test on Soil Sample from Lutheran Home of Southbury, CT

Dear Mr. Baglini:

Pursuant to your request a falling head permeability test was performed on a tube sample you delivered to our office. The sample was identified as B-10. We could not read the depth marked on tube. The sample had a permeability of 2.8 feet/day.

If you have any questions please call me.

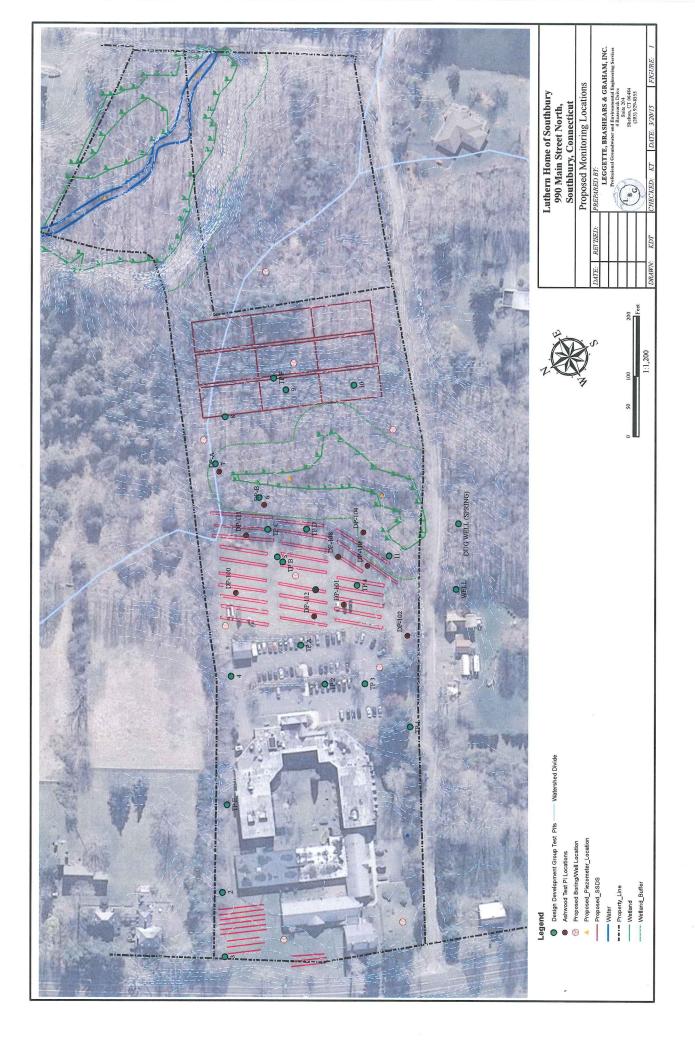
Very truly yours,

May Week

Max Welti, P.E.

ASHWOOD

PERMEABILITY TEST RESULTS


LEGGETTE, BRASHEARS & GRAHAM, INC.

LUTHERAN HOME Southbury, CT

PERMEABILITY TESTS

samples taken 6/28/9

DP#	depth	H1 H2				K	. К	LTAR
Construction and a file distribution of the second sec	r	(in)	<u>(in)</u>	(in)	(min)	(ft/day)	(ft/min)	
DP 110	48"	7.19	2.19	0.63	50	1.600	0.00111	0.412
DP 111	72"	7.25	6.50	2.50	50	0.655	0.00045	0.361
DP 111	72"	7.56	6.38	1.94	50	0.792	0.00055	0.371

APPENDIX III

HYDROGRAPHS AND REGIONAL WATER-LEVEL DATA

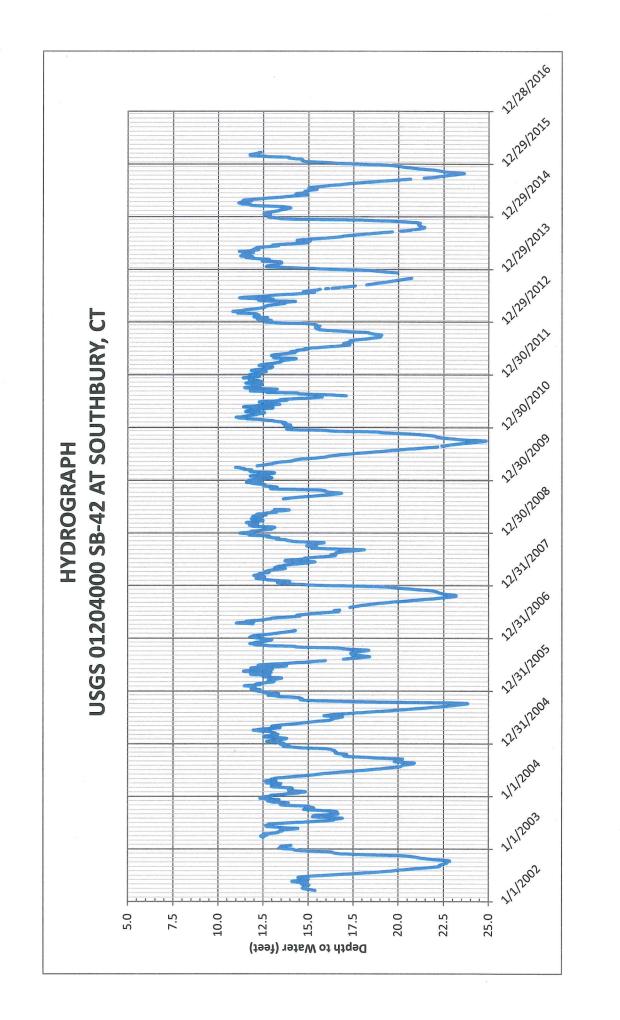
LEGGETTE, BRASHEARS & GRAHAM, INC.

USGS-SB-42

LEGGETTE, BRASHEARS & GRAHAM, INC.

USGS 01204000 SB-42 AT SOUTHBURY, CT

		Average DTW (feet below	grade)	Maximum DTW	(feet below	grade)	Year	Minimum DTW	(feet below	grade)	Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
	Annual	15.26		-	19.21		2002		12.75		2011	19.21	14.05	15.93	15.58	13.91	16.79	14.15	13.19	16.86	12.75	14.98	14.63	15.33	16.33	
12	Dec	14.77	and a second		19.82		2007		11.87		2011	15.54	12.74	13.95	12.85	12.54	19.82	12.11	12.00	15.23	11.87	14.63	18.57	15.13	19.77	
11	Nov	16.66			22.21		2007		11.96		2011	19.79	13.45	16.36	14.18	12.86	22.21	13.60	12.89	20.67	11.96	15.60		20.88	22.13	
10	Oct	18.77			23.07		2010		12.00		2011	22.31	14.97	17.00	20.03	17.43	22.71	15.27	15.83	23.07	12.00	18.14	19.93	21.20	22.88	
െ	Sep	18.49			23.76		2010		12.53		2011		16.30	19.63	22.21	17.57	20.23	16.25	15.46	23.76	12.53	18.66	18.27	19.34	20.19	
00	Aug	17.36			21.49	-	2010		13.83		2009		15.91	20.44	19.13	17.71	18.02	16.71	13.83	21.49	15.21	17.28	15.85	16.79	17.23	
7	Jul	15.90			19.23		2004		14.12		2011		15.49	19.23	16.52	14.14	16.54	15.50		18.67	14.12	16.33	14.19	14.79	15.29	
9	Jun	14.20			16.51		2004		12.13		2013		12.94	16.51	16.05	12.70	14.93	14.52	13.59	16.14	12.74	14.41	12.13	13.26	14.72	
ŝ	May	13.18			14.04		2010		11.88		2014		13.76	13.98	13.94	12.19	12.82	13.58	12.68	14.04	12.25	13.31	13.47	11.88	13.46	
4	Apr	12.44			13.72		2012		11.46		2015		12.78	12.93	12.69	12.65	11.57	13.05	12.08	12.70	12.03	13.72	12.57	11.55	11.46	
e	Mar	12.33			13.34		2004		11.28		2013		12.52	13.34	13.01	13.03		12.34	12.06	11.53	11.49	12.82	11.28	12.16	12.65	12.02
2	Feb	12.98			14.23		2004	and the second	12.06		2006			14.23	13.20	12.06	13.71	12.70	12.39	12.59	13.04	12.62	12.14	13.24	13.43	13.42
F	Jan	13.14			15.47		2016		12.07		2006		13.64	13.58	13.18	12.07	12.16	14.13	12.23	12.42	13.82	12.24	12.54	13.77	12.72	15.47
		Average DTW (feet	below grade)	Marimine DTM /fact	hold hold hold	nciow grade)	Year	Minimum DTW (faat	helow grade)		Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016

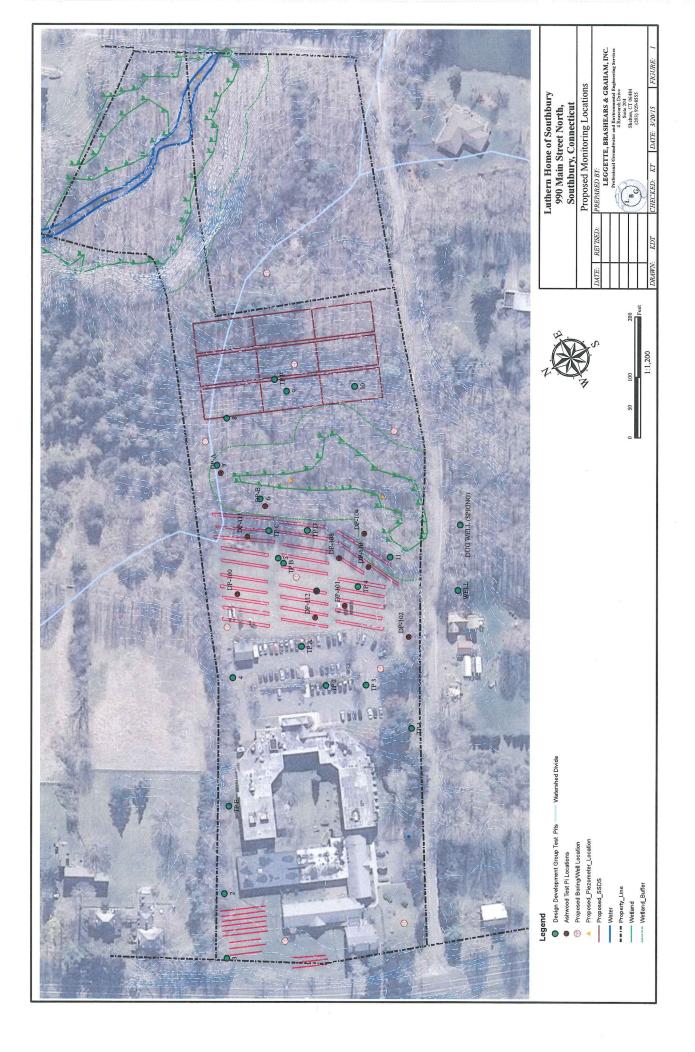

LEGGETTE, BRASHEARS GRAHAM, INC.

K:\Jobs\Beta Group\Lutheran Home of Southbury\Seasonal High Water Level\SB-42.xlsx

USGS 01204000 SB-42 AT SOUTHBURY, CT

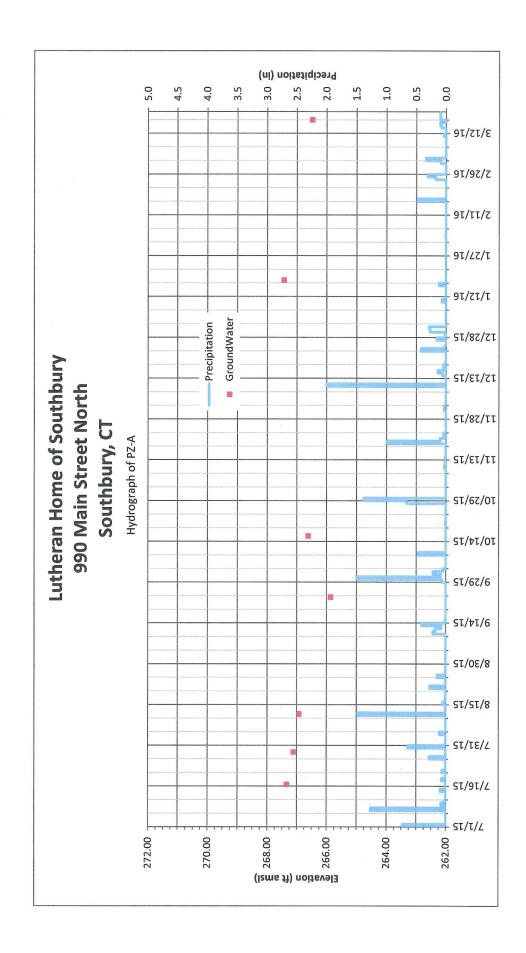
an Less than or	%) Equal (%)	39.6% 60.4%			32.3% 67.7%			80% 20.0%	85.4% 14.6%														
Greater than	or Equal (%)	39.	39.	37.	32.	24.		õ	85.														
	DTW	14.96			15.86			12.48	12.21		-0.27												
	Date	6/29/2015	7/1/2015	7/16/2015	7/28/2015	8/11/2015		Seasonal HI	3/17/2016		Correction												
		0.001	0.02	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	00 U
_	_	99.9%	98.0%	95.0%	90.0%	85.0%	80.0%	75.0%	70.0%	65.0%	60.0%	55.0%	50.0%	45.0%	40.0%	35.0%	30.0%	25.0%	20.0%	15.0%	10.0%	5.0%	1.0%
-+00200	Leiceilla																						
Usgs DTW 2002-	2015 data(feet)	10.98	11.41	11.72	11.97	12.23	12.49	12.70	12.92	13.11	13.36	13.66	14.02	14.53	14.92	15.42	16.24	16.81	17.77	19.05	20.47	22.08	23.39

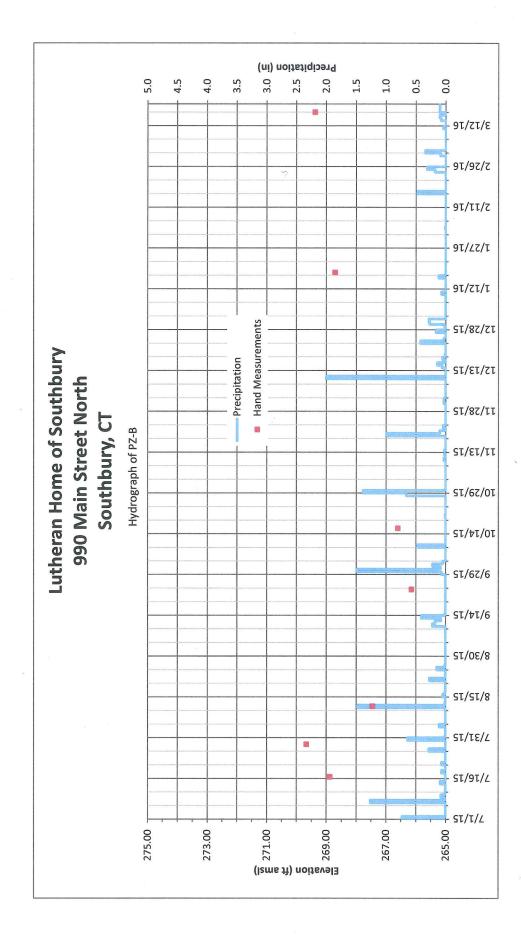
LEGGETTE, BRASHEARS GRAHAM, INC.

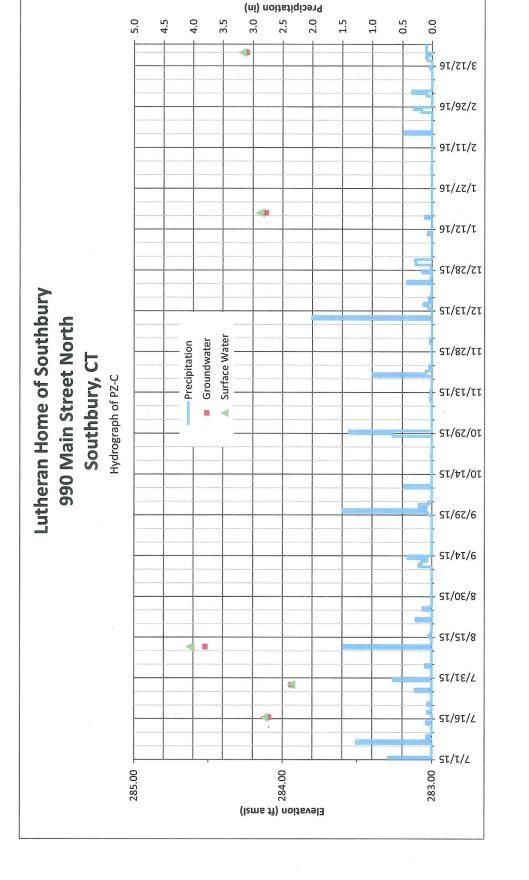

ASHWOOD WATER-LEVEL DATA

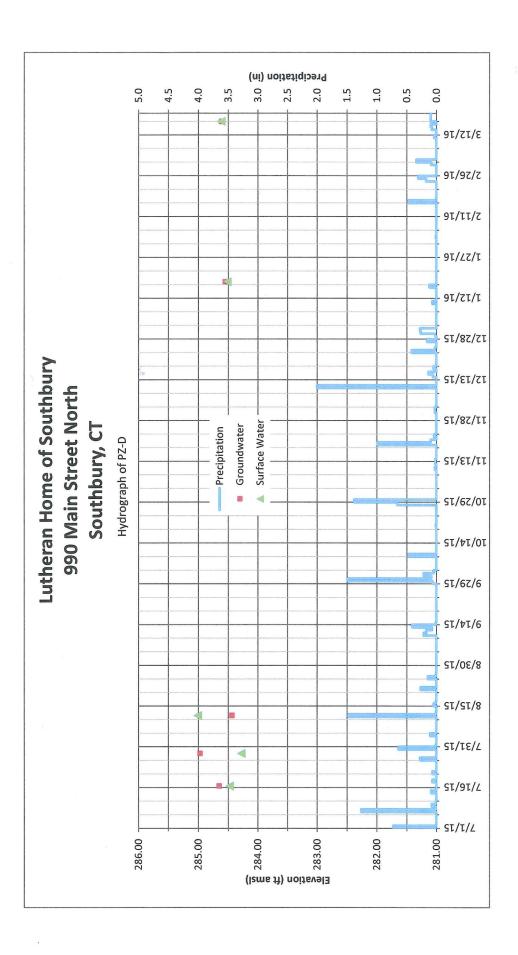
LEGGETTE, BRASHEARS & GRAHAM, INC.

Lutheran Home Southbury, CT

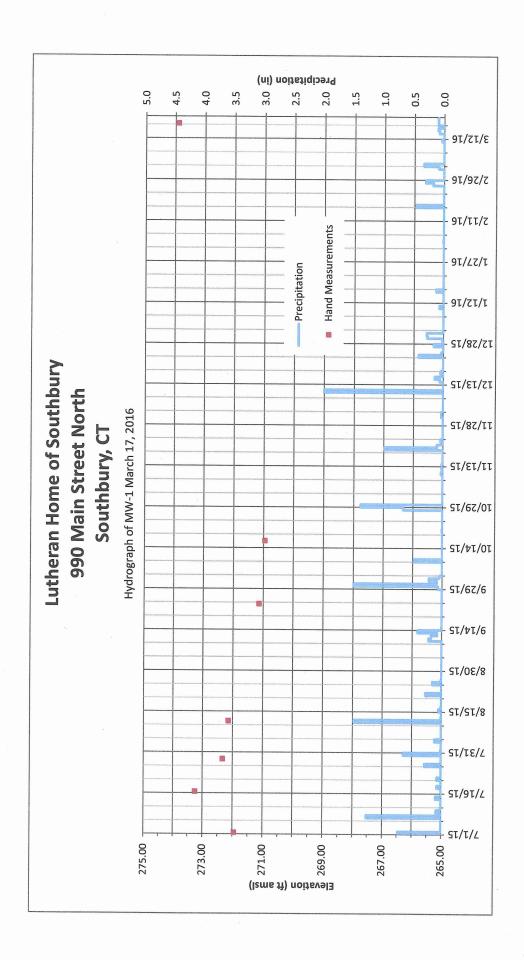

Groundwater Monitoring

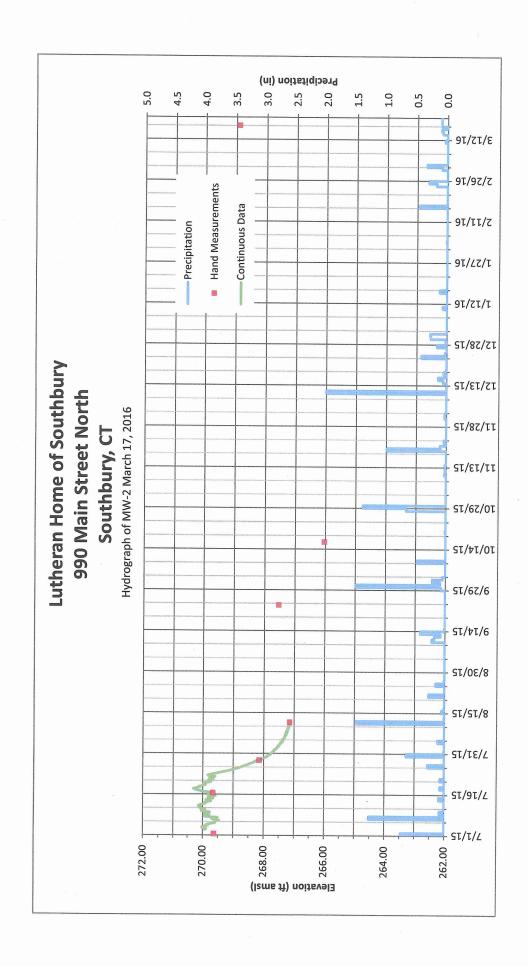

			3	Ground	water E	levation			
Date	DP A	DP B	DP 100	DP 101	DP 102	DP 104	DP 110	DP 111	DP 112
3/18/81	83.7	83.1							
3/18/81	83.4	8 <mark>3.0</mark>				,			
1994:									
4/21	83.4	82.8							
5/2	83.3	82.8	dry	81.0	78.8	82.3			
5/16	83.2	82.8	88	80.9	78.4	82.2			
6/2	83.0	82.5		dry	78.5	82.1			
6/28	82.7	82.3	10	89	78.0	81.8	81.0	80.1	dry
7/12	82.4	82.5	89		77.8	81.5	dry	dry	10
8/1	82.2	82.0	89	89	- 77.5	81.3	89		89



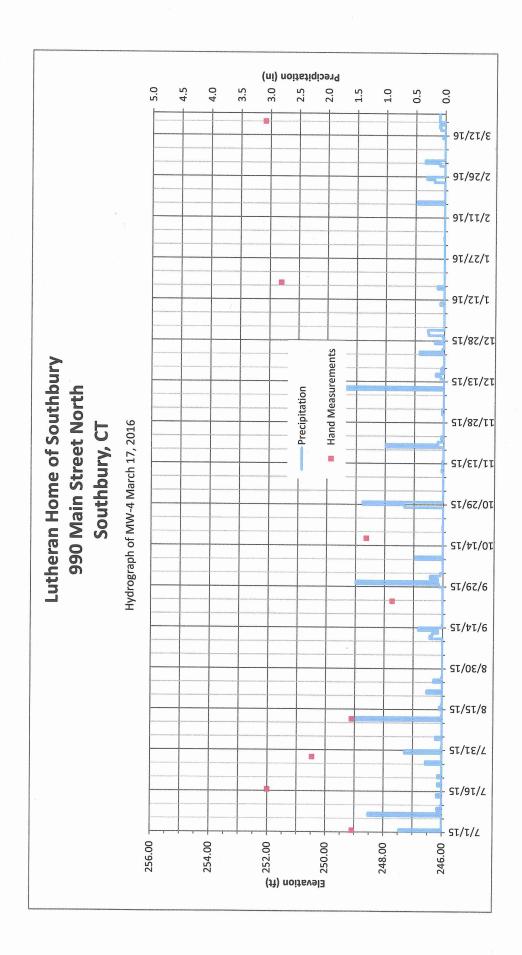

LBG PIEZOMETERS

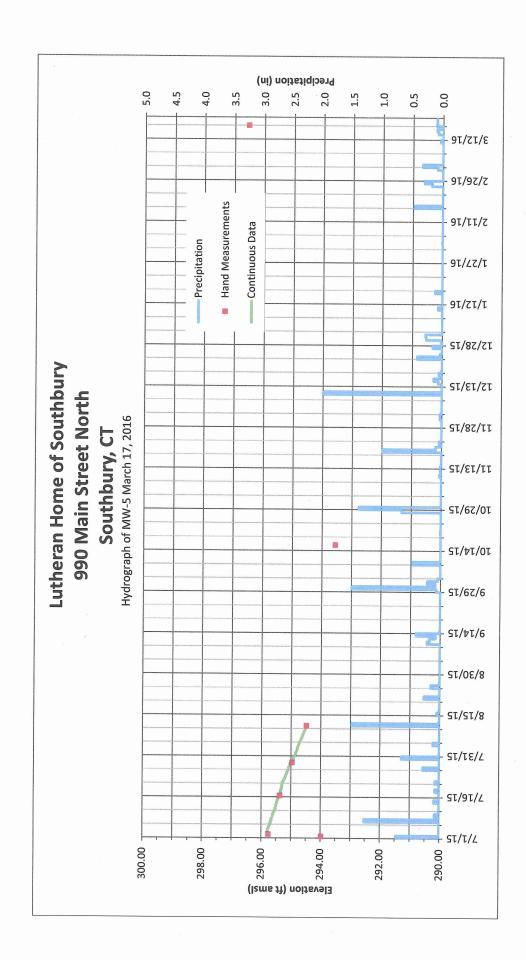
LEGGETTE, BRASHEARS & GRAHAM, INC.

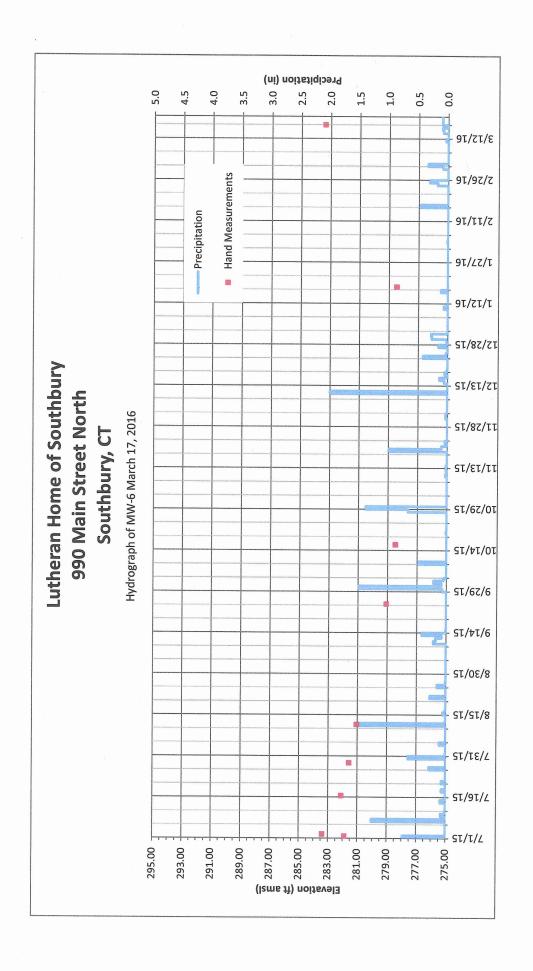


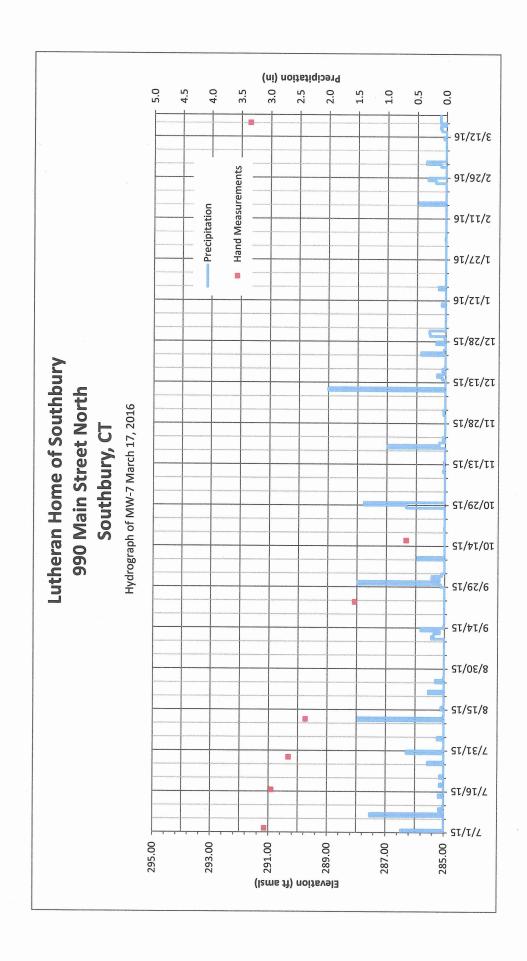


LBG MONITOR WELLS

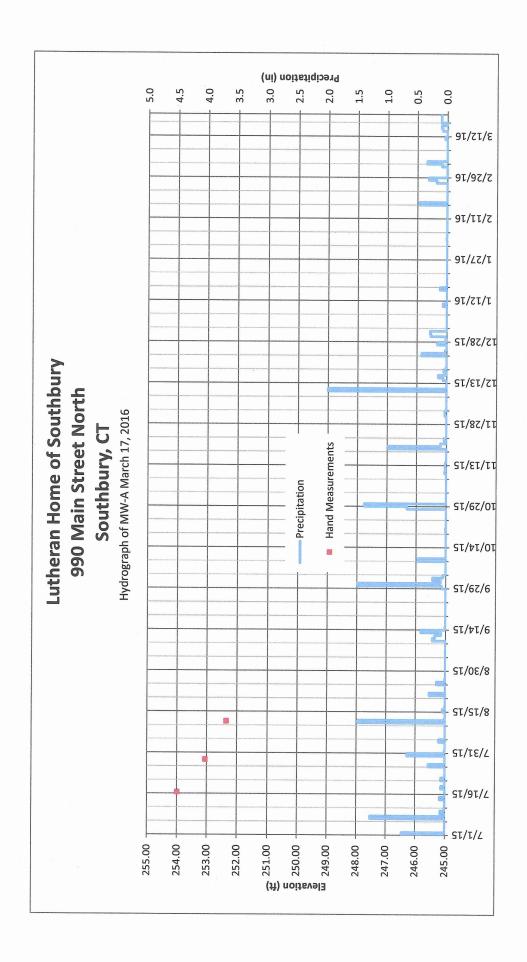

LEGGETTE, BRASHEARS & GRAHAM, INC.

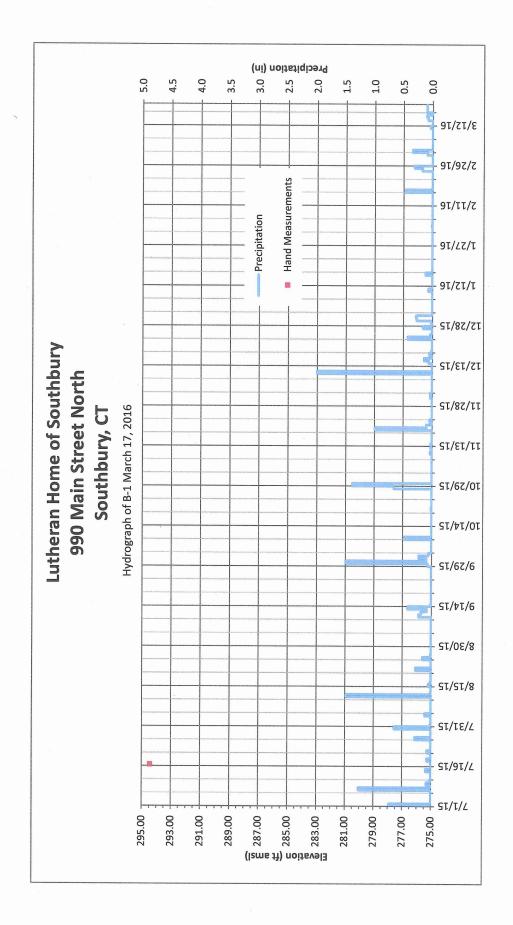


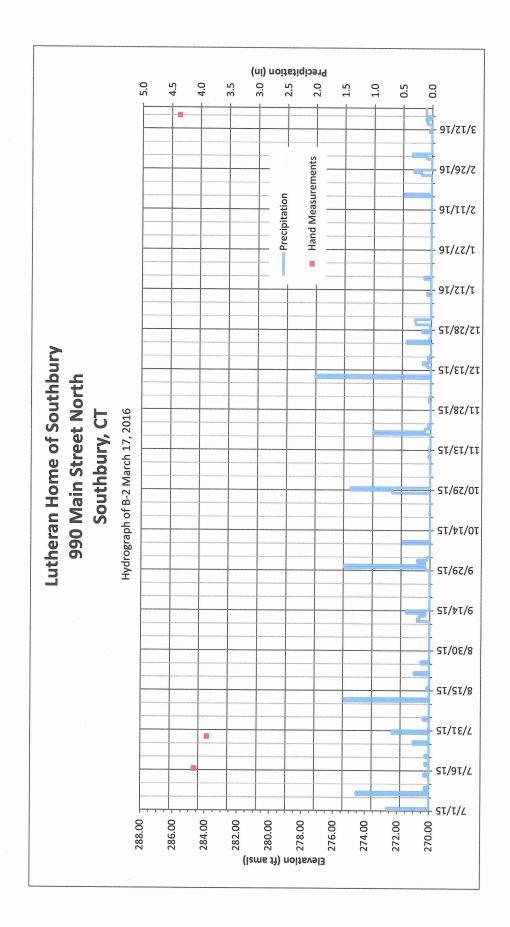




Precipitation (in) 5.0 4.0 3.0 0.0 4.5 3.5 2.5 2.0 1.5 1.0 0.5 97/77/8 97/97/7 9T/TT/Z Hand Measurements 9T/LZ/T Precipitation 91/77/1 ST/82/2 Lutheran Home of Southbury 51/81/2 990 Main Street North Hydrograph of MW-3 March 17, 2016 ST/87/T Southbury, CT ST/ET/T ST/6Z/0 25 51/41/0 ST/6Z/6 51/41/6 () (ST/0E/8 ST/ST/8 ST/TE/L ST/9T/L ST/T/L Elevation (ft ams) 264.00 268.00 266.00 260.00 258.00

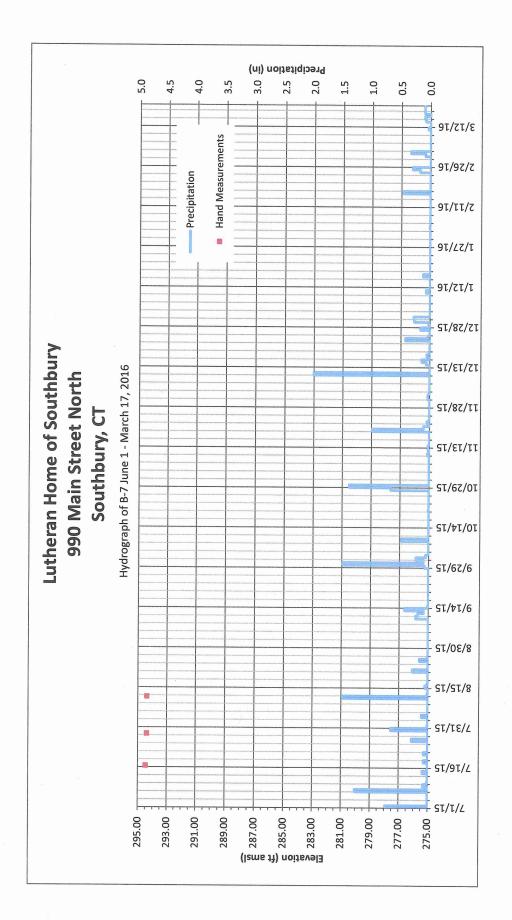


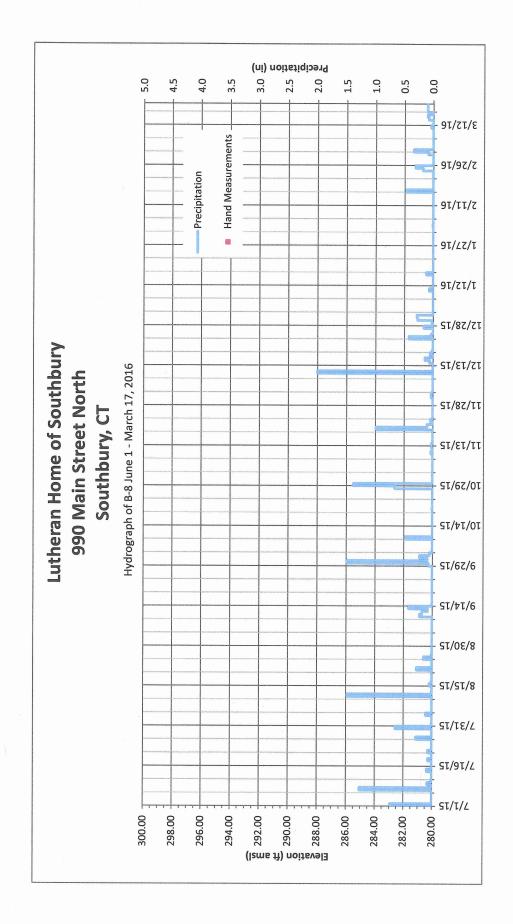

Precipitation (in) 5.0 4.0 4.5 3.5 3.0 2.5 1.5 1.0 2.0 0.0 0.5 97/77/8 Hand Measurements 97/97/7 Precipitation 91/11/2 9T/LZ/T 5 91/71/1 5 ST/87/7 Lutheran Home of Southbury 51/21/2 990 Main Street North ST/87/T Hydrograph of MW-8 March 17, 2016 Southbury, CT ST/ET/T ST/6Z/0 ST/77/0 ST/6Z/6 -ST/#T/6 2 ST/0E/8 ST/ST/8 ST/TE/L ST/9T/L ST/T/L 296.00 294.00 (ft) 292.00 292.00 292.00 292.00 290.00 288.00 286.00

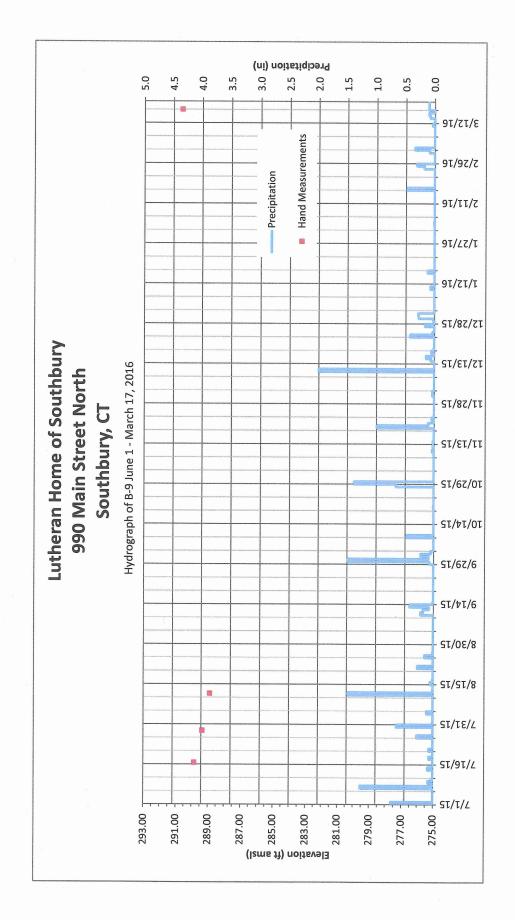

LEGGETTE, BRASHEARS GRAHAM, INC.

TEST PIT STAND PIPES

LEGGETTE, BRASHEARS & GRAHAM, INC.




Precipitation (in) 5.0 4.5 4.0 3.5 2.5 1.0 3.0 2.0 0.5 0.0 1.5 -97/77/8 Hand Measurements 9T/9Z/Z Precipitation 9T/TT/Z 9T/LZ/T 9T/7T/T ST/87/77 Lutheran Home of Southbury 51/51/21 Hydrograph of B-3 June 1 - March 17, 2016 990 Main Street North ST/87/TT Southbury, CT ST/ET/TT ST/6Z/0T ST/#T/OT ST/67/6 ST/77/6 ST/0E/8 ST/ST/8 ST/TE/L ST/9T/L + ST/T/L 283.00 281.00 279.00 269.00 277.00 275.00 273.00 271.00 (Isme ff) noitevel3


LEGGETTE, BRASHEARS GRAHAM, INC.

Precipitation (in) 5.0 4.5 4.0 3.5 2.5 2.0 3.0 1.5 1.0 0.5 0.0 91/71/8 Hand Measurements 5/56/70 Precipitation 91/11/2 9T/LZ/T 9T/7T/T 51/87/71 Lutheran Home of Southbury 51/51/71 Hydrograph of B-4 June 1 - March 17, 2016 990 Main Street North ST/87/TT Southbury, CT ST/8T/TT ST/67/0T 51/4/12 ST/67/6 ST/77/6 ST/0E/8 ST/ST/8 ¢. ST/TE/L ST/9T/L - ST/T/L Elevation (ft amsl) 276.00 276.00 284.00 282.00 280.00 272.00 270.00 274.00

LEGGETTE, BRASHEARS GRAHAM, INC.

APPENDIX IV WATER-QUALITY DATA

LEGGETTE, BRASHEARS & GRAHAM, INC.

LABORATORY RESULTS

LEGGETTE, BRASHEARS & GRAHAM, INC.

80 Lupes Drive Stratford, CT 06615

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client:

Ms. Tunde Sandor Leggette, Brashears & Graham 4 Research Dr. Suite 204 Shelton, CT 06484

Analytical Report CET# 5090550

Report Date:October 01, 2015 Project: BETA, Southbury

Connecticut Laboratory Certificate: PH 0116 Massachussetts laboratory Certificate: M-CT903

New York Certification: 11982 Rhode Island Certification: 199

SAMPLE SUMMARY

The sample(s) were received at 1.1°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
MW-1	5090550-01	Water	9/23/2015 9:35	09/24/2015
MW-2	5090550-02	Water	9/23/2015 10:35	09/24/2015
MW-3	5090550-03	Water	9/23/2015 12:00	09/24/2015
MW-4	5090550-04	Water	9/23/2015 12:45	09/24/2015

Analyte: Total Nitrogen [Calculated Analyte]

Analyst: Various

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090550-01	MW-1	19	1.2	mg/L	i				
5090550-02	MW-2	13	1.2	mg/L	1				
5090550-03	MW-3	5.1	1.2	mg/L	1				
5090550-04	MW-4	2.8	1.2	mg/L	1				

626374 .

Adunistani u kainda

Analyte: Nitrite as N [EPA 300.0]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090550-01	MW-1	ND	0.10	mg/L	I	B5I2428	09/24/2015	09/24/2015 17:02	
5090550-02	MW-2	ND	0.10	mg/L	1	B5I2428	09/24/2015	09/24/2015 17:18	
5090550-03	MW-3	ND	0.10	mg/L	l	B5I2428	09/24/2015	09/24/2015 17:35	
5090550-04	MW-4	ND	0.10	mg/L	1	B5I2428	09/24/2015	09/24/2015 17:51	

Analyte: Nitrate as N [EPA 300.0]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090550-01	MW-1	ND	0.10	mg/L	1	B5I2428	09/24/2015	09/24/2015 17:02	
5090550-02	MW-2	ND	0.10	mg/L	1	B512428	09/24/2015	09/24/2015 17:18	
5090550-03	MW-3	0.16	0.10	mg/L	1	B5I2428	09/24/2015	09/24/2015 17:35	
5090 550-0 4	MW-4	2.8	0.10	mg/L	I	B5I2428	09/24/2015	09/24/2015 17:51	

CET # : 5090550 Project: BETA, Southbury

Analyte: Ammonia as N [EPA 350.1]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090550-01	MW-I	22	0.10	mg/L	1	B5I2821	09/28/2015	09/28/2015 15:34	
5090550-02	MW-2	12	0.10	mg/L	1	B5I2821	09/28/2015	09/28/2015 15:34	
5090550-03	MW-3	4.1	0.10	mg/L	1	B5I2821	09/28/2015	09/28/2015 15:34	
5090550-04	MW-4	ND	0,10	mg/L	1	B5I2821	09/28/2015	09/28/2015 15:34	

Analyte: Phosphorous, Total [EPA 365.4]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090550-01	MW-1	2,6	0.10	mg/L	1	B5I2907	09/30/2015	09/30/2015 13:34	
5090550-02	MW-2	2.1	0.10	mg/L	1	B512907	09/30/2015	09/30/2015 13:34	
5090550-03	MW-3	ND	0.10	mg/L	1	B512907	09/30/2015	09/30/2015 13:34	
5090550-04	MW-4	ND	0,10	mg/L	1	B5I2907	09/30/2015	09/30/2015 13:34	

Analyte: Orthophosphate as P [SM 4500-P E]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090550-01	MW-1	1.9	1,0	mg/L	10	B5I2430	09/24/2015	09/24/2015 16:48	
5090550-02	MW-2	1.6	1.0	mg/L	10	B5I2430	09/24/2015	09/24/2015 16:48	
5090550-03	MW-3	0.12	0.10	mg/L	1	B5I2430	09/24/2015	09/24/2015 16:48	
5090550-04	MW-4	ND v	0,10	mg/L	1	B5I2430	09/24/2015	09/24/2015 16:48	

Analyte: Total Kjeldahl Nitrogen (TKN) [EPA 351.2]

10

L.

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL.	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090550-01	MW-1	19	1.0	mg/L	1	B5I2908	09/30/2015	09/30/2015 16:19	
5090550-02	MW-2	13	1,0	mg/L	1	B5I2908	09/30/2015	09/30/2015 16:19	
5090550-03	MW-3	4.9	1.0	mg/L	1	B5I2908	09/30/2015	09/30/2015 16:19	
5090550-04	MW-4	ND	1.0	mg/L	1	B512908	09/30/2015	09/30/2015 16:19	

in hinder (* 1985) hinder fan de skriet i

Analyte: Phosphorous, Total Dissolved [EPA 365.4]

Analyst: CC

Matrix: Water

Lab	oratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
50	90550-01	MW-1	2.4	0.10	mg/L	1	B5I2909	09/30/2015	09/30/2015 13:38	
50	90550-02	MW-2	1.9	0.10	mg/L	i	B5I2909	09/30/2015	09/30/2015 13:38	
50	90550-03	MW-3	ND	0.10	mg/L	1	B5I2909	09/30/2015	09/30/2015 13:38	
50	90550-04	MW-4	ND	0,10	mg/L	1	B5I2909	09/30/2015	09/30/2015 13:38	

CET # : 5090550 Project: BETA, Southbury

QUALITY CONTROL SECTION

SHI.

Batch B5I2428 - EPA 300.0

Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B5I2428-BLK1)					Prepared: 9/	/24/2015 Analy	zed: 9/24/20	15	
Nitrate as N	ND	0.10							
Nitrite as N	ND	0.10							
LCS (B5I2428-BS1)					Prepared: 9/	/24/2015 Analy	zed: 9/24/20	15	
Nitrate as N	5.2	0.10	5.000		105	80 - 120			
Nitrite as N	5.0	0.10	5.000		99.4	80 - 120			,

Project: BETA, Southbury

Batch B5I2430 - SM 4500-P E											
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes		
Blank (B512430-BLK1)			·	Prepared: 9/24/2015 Analyzed: 9/24/2015							
Orthophosphate as P	ND	0.10									
LCS (B512430-BS1)					Prepared: 9,	/24/2015 Analy	zed: 9/24/20	15			
Orthophosphate as P	0.309	0.10	0,326		94. 8	80 - 120					

. C)

Project: BETA, Southbury

	Batch B5I2821 - EPA 350.1											
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes			
Blank (B5I2821-BLK1)	Prepared: 9/28/2015 Analyzed: 9/28/2015											
Ammonia as N	ND	0.10										
LCS (B512821-BS1)					Prepared: 9	/28/2015 Analy	zed: 9/28/20	15				
Ammonia as N	5.1	0,10	5,000		102	80 - 120						

Project: BETA, Southbury

Batch B5I2907 - EPA 365.4											
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes		
	Prepared: 9/30/2015 Analyzed: 9/30/2015										
Phosphorous, Total	ND	0.10									
LCS (B512907-BS1)	Prepared: 9/30/2015 Analyzed: 9/30/2015										
Phosphorous, Total	0.509	0.10	0.509		100	80 - 120					

Project: BETA, Southbury

		Batch I	35I2908 - E	EPA 351.2					
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B5I2908-BLK1)	Prepared: 9/30/2015 Analyzed: 9/30/2015								
Total Kjeldahl Nitrogen (TKN)	ND	1.0							
LCS (B512908-BS1)					Prepared: 9	/30/2015 Analy	/zed: 9/30/20	15	
Total Kjeldahl Nitrogen (TKN)	5.75	1.0	5.000		115	80 - 120			

÷.

1

Project: BETA, Southbury

Batch B512909 - EPA 365.4											
Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes			
				Prepared: 9/	/30/2015 Analy	zed: 9/30/20	15				
ND	0.10										
				Prepared: 9/	/30/2015 Analy	zed: 9/30/20	5				
0.481	0.10				80 - 120			L			
	Source: 5090	550-01		Prepared: 9	/30/2015 Analy	/zed: 9/30/20	15				
2.37	0.10		2.40			1.26	20				
	(mg/L) ND 0.481	Result (mg/L) RL (mg/L) ND 0.10 0.481 0.10 Source: 5090	Result (mg/L) RL (mg/L) Spike Level ND 0.10 0.481 0.10 Source: 5090550-01	Result (mg/L) RL (mg/L) Spike Level Source Result ND 0.10 0.481 0.10 Source: 5090550-01	Result (mg/L) RL (mg/L) Spike Level Source Result % Rec Prepared: 9/ ND 0.10 Prepared: 9/ 0.481 0.10 Source: 5090550-01 Prepared: 9/ Prepared: 9/	Result (mg/L) RL (mg/L) Spike Level Source Result % Rec % Rec Limits ND 0.10 Prepared: 9/30/2015 Analy 0.481 0.10 80 - 120 Source: 5090550-01 Prepared: 9/30/2015 Analy	Result (mg/L) RL (mg/L) Spike Level Source Result % Rec % Rec % Rec Limits RPD ND 0.10 Prepared: 9/30/2015 Analyzed: 9/30/201 9/30/2015 Analyzed: 9/30/201 0.481 0.10 80 - 120 80 - 120 Source: 5090550-01 Prepared: 9/30/2015 Analyzed: 9/30/20.	Result (mg/L) RL (mg/L) Spike Level Source Result % Rec % Rec RPD Limits RPD Limit ND 0.10 Prepared: 9/30/2015 Analyzed: 9/30/2015 Prepared: 9/30/2015 Analyzed: 9/30/2015 0.481 0.10 80 - 120 Prepared: 9/30/2015 Analyzed: 9/30/2015 Source: 5090550-01 Prepared: 9/30/2015 Analyzed: 9/30/2015 Prepared: 9/30/2015 Analyzed: 9/30/2015			

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

David Ditta Laboratory Director

Report Comments:

Sample Result Flags:

E- The result is estimated, above the calibration range.

H- The surrogate recovery is above the control limits.

L- The surrogate recovery is below the control limits.

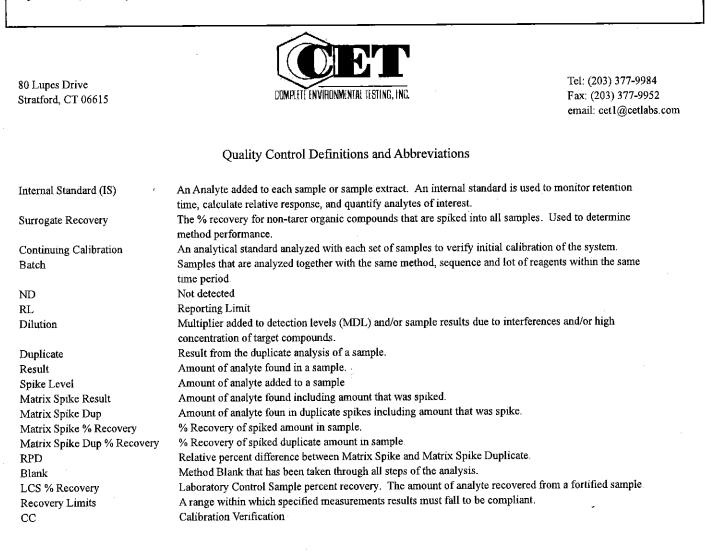
B- The compound was detected in the laboratory blank.

P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.

D- The RPD between the sample and the sample duplicate is high. Sample Homogenity may be a problem.

+- The Surrogate was diluted out.

- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.


I- The Analyte exceeds %RSD limits for the Initial Calibration. This is a non-directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at the specified detection limit

All analyses were performed in house unless a Reference Laboratory is listed. Samples will be disposed of 30 days after the report date. CET # : 5090550 Project: BETA, Southbury

Flags:

- H- Recovery is above the control limits
- L- Recovery is below the control limits
- B- Compound detected in the Blank
- P- RPD of dual column results exceeds 40%
- #- Sample result too high for accurate spike recovery.

New York Certification 11982 Rhode Island Certification 199

Connecticut Laboratory Certification PH0116 Massachussets Laboratory Certification M-CT903

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Complete Environmental Testing, Inc.

Client: Leggette, Brashears & Graham

Project Location: BETA, Southbury

Laboratory Sample ID(s):

5090550-01 thru 5090550-04

List RCP Methods Used:

Project Number: Sample Date(s):

09/23/2015

CET #: 5090550

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents?	Yes 🗌 No
1A	Were the method specified preservation and holding time requirements met?	⊻Yes ☐ No
19	VPH and EPH Methods only: Was the VPH and EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?	Yes No
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Yes No
3	Were samples received at an appropriate temperature (< 6 degrees C.)?	Yes No
4	Were all QA/QC performance criteria specified in the CT DEP Reasonable Confidence Protocol documents achieved?	Yes No
5a	a) Were reporting limits specified or referenced on the chain-of-custody?	Yes 🗌 No
5b	b) Were these reporting limits met?	∠Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all consituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes No
7	Are project specific matrix spikes and laboratory duplicates included with this data set?	Yes 🔽 No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence."

This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Position: Laboratory Director

Printed Name: David Ditta

Date: 10/01/2015

Name of Laboratory: <u>Complete Environmental Testing, Inc.</u>

This certification form is to be used for RCP methods only.

RCP Case Narrative

41 _

7- Project specific QC was not requested by the client.

QC Batch/Sequence Report

988994 L.E

Batch	Sequence	CET ID	Sample ID	Specific Method	Matrix	Collection Date
[CALC]		5090550-01	MW-1	Calculated Analyte	Water	09/23/2015
[CALC]		5090550-02	MW-2	Calculated Analyte	Water	09/23/2015
[CALC]		5090550-03	MW-3	Calculated Analyte	Water	09/23/2015
[CALC]		5090550-04	MW-4	Calculated Analyte	Water	09/23/2015
B5I2428		5090550-01	MW-1	EPA 300.0	Water	09/23/2015
B5I2428		5090550-02	MW-2	EPA 300.0	Water	09/23/2015
B5I2428		5090550-03	MW-3	EPA 300.0	Water	09/23/2015
B5I2428		5090550-04	MW-4	EPA 300.0	Water	09/23/2015
B5I2821		5090550-01	MW-1	EPA 350.1	Water	09/23/2015
B5I2821		5090550-02	MW-2	EPA 350.1	Water	09/23/2015
B512821		5090550-03	MW-3	EPA 350.1	Water	09/23/2015
B5I2821		5090550-04	MW-4	EPA 350.1	Water	09/23/2015
B5I2908		5090550-01	MW-1	EPA 351.2	Water	09/23/2015
B5I2908		5090550-02	MW-2	EPA 351.2	Water	09/23/2015
B5I2908		5090550-03	MW-3	EPA 351.2	Water	09/23/2015
B5I2908		5090550-04	MW-4	EPA 351.2	Water	09/23/2015
B5I2907		5090550-01	MW-1	EPA 365.4	Water	09/23/2015
B5I2907		5090550-02	MW-2	EPA 365.4	Water	09/23/2015
B5I2907		5090550-03	MW-3	EPA 365.4	Water	09/23/2015
B5I2907		5090550-04	MW-4	EPA 365.4	Water	09/23/2015
B5I2909		5090550-01	MW-1	EPA 365.4	Water	09/23/2015
B512909		5090550-02	MW-2	EPA 365.4	Water	09/23/2015
B5I2909		5090550-03	MW-3	EPA 365.4	Water	09/23/2015
B5I2909		5090550-04	MW-4	EPA 365.4	Water	09/23/2015
B5I2430		5090550-01	MW-1	SM 4500-P E	Water	09/23/2015
B5I2430		5090550-02	MW-2	SM 4500-P E	Water	09/23/2015
B5I2430		5090550-03	MW-3	SM 4500-P E	Water	09/23/2015
B5I2430		5090550-04	MW-4	SM 4500-P E	Water	09/23/2015

Tunde Sandar Additional charge may apply. har 2039298555 Phone# Soil VOCs Only (M=MeOH CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, O-Other) PRESERVATIVE (CI-HCI, N-HNO3, S-H2SO4, Na-NaOH, C=Cool, O-Other) Company Nam **Client / Reporting Information** RELINQUISHED BY: RELINDUISHED BY: Address RELINQUISHED BY HResource 80 Lupes Drive Stratford, CT 06615 Bottle Request e-mail: bottleorders@cetlabs.com ME 1 MW-2 3 2 1 1 くとい Ŷ Sample ID F 500 ** TAT begins when the samples are received at the Lab and all issues are resolved. TAT for samples received after 3 p.m. will start on the next business day. e-mail: cet1@cetlabs.com シデオ B= Sodium B=Bisulfate 974 Ē DATE/TIME DATE/TIME DATE/TIME State Fax: (203) 377-9952 Tel: (203) 377-9984 Sample Depths (Units) 5 100 W=Water F= Empty Fax # تتر. 9/23/30935 Date/Time Collection COMPLETE ENVIRONMENTAL TESTING, INC. Sherton, CT tsindor@lhgct.com несеі үер вүз HECEIVED BY: E-mai 74721 1200 WED BY A=Air S=Şoil W=Water Water C=Cassette Solid Wipe Other E=Encore) (Specify) DW=Drinking Matrix E 444 00 Same Day (check one) Turnaround Time ** Next Day * 2-3 Deys * Std (5-7 Days) 8260 CT List NOTES: QA/QC Data Report Location: Southbarry Project BETH Project Contact: 1000 Receipt RSR Reporting Limits (check one) Temp Upon 1 Laboratory Certification Needed (check one) CHAIN OF CUSTODY 8260 Aromatics 8260 Halogens Organics 624 CT ETPH B270 CT List റ് □ Sta 8270 PNAs PCBs EDD - Specify Format _____ Pesticides Sunder 13 Priority Poli Metals (check all that apply) 4 Cooling: Evidence of X GA ☐ Site Specific (MS/MSD) * 8 RCRA TOTAL Project Information TCLP □ GB Ζ व्र भ SPLP Field Filtered X PO # Collector(s): _ Project #: Lab To Filter Client: II SWP Volatile Soils Only: D NY \times Total TKN Minonia SHEET Date and Time in Freezer Uinate Nitrie 민 Additional XRCP Pkg * P. Lind XХ Other Total Other \Join MA Phosphirus -Uni ရှိ DOAM . REV. 06/14 TOTAL # OF CONT. NOTE # Page 16 of 16

ب ال

þ

i

80 Lupes Drive Stratford, CT 06615

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client:

Ms. Tunde Sandor Leggette, Brashears & Graham 4 Research Dr. Suite 204 Shelton, CT 06484

Analytical Report CET# 5090551

Report Date:October 01, 2015 Project: BETA, Southbury

Connecticut Laboratory Certificate: PH 0116 Massachussetts laboratory Certificate: M-CT903

New York Certification: 11982 Rhode Island Certification: 199 Project: BETA, Southbury

SAMPLE SUMMARY

The sample(s) were received at 1.6°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
MW-6	5090551-01	Water	9/24/2015 9:55	09/24/2015
MW-7	5090551-02	Water	9/24/2015 10:25	09/24/2015
MW-8	5090551-03	Water	9/24/2015 8:55	09/24/2015

÷

CET #: 5090551 Project: BETA, Southbury

Analyte: Total Nitrogen [Calculated Analyte]

Analyst: Various

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090551-01	MW-6	ND	1.2	mg/L	1				
5090551-02	MW-7	2.2	1.2	mg/L	1				
5090551-03	MW-8	1.4	12	mg/L	1				

Analyte: Nitrite as N [EPA 300.0]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090551-01	MW- 6	NĎ	0.10	mg/L	1	B5I2428	09/24/2015	09/24/2015 18:08	
5090551-02	MW-7	ND	0.10	mg/L	1	B5I2428	09/24/2015	09/24/2015 18:23	
5090551-03	MW-8	ND	0.10	mg/L	1	B5I2428	09/24/2015	09/24/2015 18:40	

Analyte: Nitrate as N [EPA 300.0]

Analyst: CC

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090551-01	MW-6	0.37	0.10	mg/L	1 .	B5I2428	09/24/2015	09/24/2015 18:08	
5090551-02	MW-7	ND	0.10	mg/L	1	B5I2428	09/24/2015	09/24/2015 18:23	
5090551-03	MW-8	ND	0.10	mg/L	1	B5I2428	09/24/2015	09/24/2015 18:40	

CET # : 5090551 Project: BETA, Southbury

Analyte: Ammonia as N [EPA 350.1]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL.	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090551-01	MW-6	ND	0.10	mg/L	1	B5I2821	09/28/2015	09/28/2015 15:34	
5090551-02	MW-7	0.14	0,10	mg/L	1	B5I2821	09/28/2015	09/28/2015 15:34	
5090551-03	MW-8	ND	0.10	mg/L	1	B5I2821	09/28/2015	09/28/2015 15:34	

Analyte: Phosphorous, Total [EPA 365.4]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090551-01	MW-6	ND	0,10	mg/L	1	B5I2907	09/30/2015	09/30/2015 13:34	
5090551-02	MW-7	3.6	1.0	mg/L	10	B5I2907	09/30/2015	09/30/2015 13:34	
5090551-03	MW-8	0.11	0.10	mg/L	1	B512907	09/30/2015	09/30/2015 13:34	

Analyte: Orthophosphate as P [SM 4500-P E]

Analyst: CC

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090551-01	MW-6	ND	0.10	mg/L	1	B512430	09/24/2015	09/24/2015 16:48	
5090551-02	MW-7	ND	0.10	mg/L	1	B5I2430	09/24/2015	09/24/2015 16:48	
5090551-03	MW-8	ND	0.10	mg/L	1	B5I2430	09/24/2015	09/24/2015 16:48	

CET # : 5090551 Project: BETA, Southbury

Analyte: Total Kjeldahl Nitrogen (TKN) [EPA 351.2]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090551-01	MW-6	ND	1.0	mg/L	1	B512908	09/30/2015	09/30/2015 16:19	
5090551-02	MW-7	2.2	1.0	mg/L	I	B512908	09/30/2015	09/30/2015 16:19	
5090551-03	MW-8	1.4	1.0	mg/L	1	B512908	09/30/2015	09/30/2015 16:19	

Analyte: Phosphorous, Total Dissolved [EPA 365.4]

Analyst: CC

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090551-01	MW-6	ND	01.0	mg/L	1	B5I2909	09/30/2015	09/30/2015 13:38	
5090551-02	MW-7	1.6	0.10	mg/L	1	B5I2909	09/30/2015	09/30/2015 13:38	
5090551-03	MW-8	0.10	0.10	mg/L	ĩ	B512909	09/30/2015	09/30/2015 13:38	

Project: BETA, Southbury

QUALITY CONTROL SECTION

Batch B5I2428 - EPA 300.0

Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B5I2428-BLK1)					Prepared: 9/	/24/2015 Analy	zed: 9/24/20	15	
Nitrate as N	ND	0.10							
Nitrite as N	ND	0.10							
LCS (B512428-BS1)					Prepared: 9/	/24/2015 Analy	zed; 9/24/20	15	
Nitrate as N	5.2	0.10	5,000		105	80 - 120			
Nitrite as N	5.0	0.10	5,000		99.4	80 - 120			

Project: BETA, Southbury

Batch B512430 - SM 4500-P E									
Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPĎ	RPD Limit	Notes	
Blank (B512430-BLK1) Prepared: 9/24/2015 Analyzed: 9/24/2015									
ND	0.10								
				Prepared; 9	/24/2015 Analy	zed: 9/24/20	15		
0.309	0,10	0.326		94,8	80 - 120				
	Source: 5090	551-01		Prepared: 9	/24/2015 Analy	zed; 9/24/20	15		
ND	0.10		ND				20		
	(mg/L) ND 0.309	Result (mg/L) RL (mg/L) ND 0.10 0.309 0.10 Source: 5090	Result (mg/L) RL (mg/L) Spike Level ND 0.10 0.309 0.10 0.326 Source: 5090551-01	Result (mg/L) RL (mg/L) Spike Level Source Result ND 0.10 0.309 0.10 0.326 Source: 5090551-01	Result (mg/L) RL (mg/L) Spike Level Source Result % Rec ND 0.10 Prepared: 9 0.309 0.10 0.326 94.8 Source: 5090551-01 Prepared: 9	Result (mg/L) RL (mg/L) Spike Level Source Result % Rec % Rec Limits ND 0.10 Prepared: 9/24/2015 Analy 0.309 0.10 0.326 94.8 80 - 120 Source: 5090551-01 Prepared: 9/24/2015 Analy	Result (mg/L) RL (mg/L) Spike Level Source Result % Rec % Rec % Rec Limits RPD ND 0.10 Prepared: 9/24/2015 Analyzed: 9/24/20 0.309 0.10 0.326 94.8 80 - 120 Source: 5090551-01	Result (mg/L) RL (mg/L) Spike Level Source Result % Rec % Rec RPD Limits RPD Limit ND 0.10 Prepared: 9/24/2015 Analyzed: 9/24/2015 9/24/2015 Analyzed: 9/24/2015 0.309 0.10 0.326 94.8 80 - 120 Source: 5090551-01	

Project: BETA, Southbury

Batch B5I2821 - EPA 350.1									
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B512821-BLK1) Prepared: 9/28/2015 Analyzed: 9/28/2015									
Ammonia as N	ND	0,10							
LCS (B512821-BS1)					Prepared: 9	/28/2015 Analy	zed: 9/28/20	15	
Ammonia as N	5.1	0.10	5.000		102	80 - 120			

vari lecă

Project: BETA, Southbury

Batch B5I2907 - EPA 365.4									
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B5I2907-BLK1)	· · · · · ·				Prepared: 9.	/30/2015 Analy	zed: 9/30/20	15	
Phosphorous, Total	ND	0,10							
LCS (B5I2907-BS1)					Prepared: 9,	/30/2015 Analy	zed: 9/30/20	15	
Phosphorous, Total	0.509	01.0	0.509		100	80 - 120			

Project: BETA, Southbury

Batch B5I2908 - EPA 351.2										
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes	
LBlank (B512908-BLK1)					Prepared: 9	/30/2015 Analy	zed: 9/30/20	15		
Total Kjeldahl Nitrogen (TKN)	ND	1.0								
LCS (B512908-BS1)					Prepared: 9	/30/2015 Analy	zed; 9/30/20	15		
Total Kjeldahl Nitrogen (TKN)	5.75	1.0	5.000		115	80 - 120				

Project: BETA, Southbury

Batch B5I2909 - EPA 365.4									
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B512909-BLK1) Prepared: 9/30/2015 Analyzed: 9/30/2015									
Phosphorous, Total Dissolved	ND	0.10							
LCS (B512909-BS1) Prepared: 9/30/2015 Analyzed: 9/30/2015									
Phosphorous, Total Dissolved	0.481	0.10				80 - 120			\mathbf{L}

1.11.2559.263

CET # : 5090551 Project: BETA, Southbury

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

1 AT

David Ditta Laboratory Director

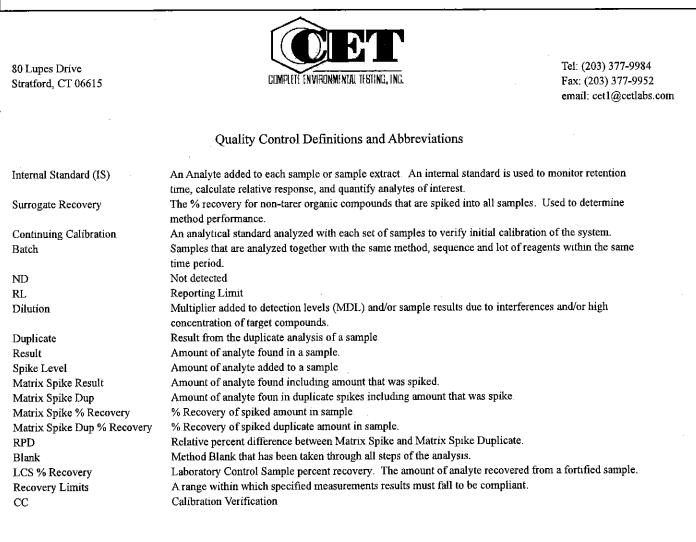
Report Comments:

Sample Result Flags:

E- The result is estimated, above the calibration range.

H- The surrogate recovery is above the control limits.

L- The surrogate recovery is below the control limits.


- B- The compound was detected in the laboratory blank.
- P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
- D- The RPD between the sample and the sample duplicate is high. Sample Homogenity may be a problem.
- +- The Surrogate was diluted out,
- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.

I- The Analyte exceeds %RSD limits for the Initial Calibration. This is a non-directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt

ND is None Detected at the specified detection limit All analyses were performed in house unless a Reference Laboratory is listed. Samples will be disposed of 30 days after the report date. CET # : 5090551 Project: BETA, Southbury

Flags:

- H- Recovery is above the control limitsL- Recovery is below the control limits
- B- Compound detected in the Blank
- P- RPD of dual column results exceeds 40%
- #- Sample result too high for accurate spike recovery.

New York Certification 11982 Rhode Island Certification 199

Connecticut Laboratory Certification PH0116 Massachussets Laboratory Certification M-CT903

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Complete Environmental Testing, Inc.

Project Location: BETA, Southbury

Laboratory Sample ID(s):

5090551-01 thru 5090551-03

List RCP Methods Used:

Client: Leggette, Brashears & Graham

Project Number:

Sample Date(s):

09/24/2015

CET #: 5090551

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents?	Yes No
LA	Were the method specified preservation and holding tune requirements met?	Yes No
18	VPH and EPH Methods only: Was the VPH and EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?	Yes No
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Yes No
3	Were samples received at an appropriate temperature (< 6 degrees C.)?	Yes No
4	Were all QA/QC performance criteria specified in the CT DEP Reasonable Confidence Protocol documents achieved?	Yes No
5a	a) Were reporting limits specified or referenced on the chain-of-custody?	Yes 🗋 No
56	b) Were these reporting limits met?	Yes No
6	For each analytical method referenced in this laboratory report package, were results reported for all consituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes No
7	Are project specific matrix spikes and laboratory duplicates included with this data set?	Yes 🖌 No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence."

This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Position: Laboratory Director

Printed Name: <u>David Ditta</u>

Date: <u>10/01/2015</u>

Name of Laboratory: Complete Environmental Testing, Inc.

This certification form is to be used for RCP methods only.

RCP Case Narrative

7- Project specific QC was not requested by the client.

QC Batch/Sequence Report

Ť.

Batch	Sequence	CET ID	Sample ID	Specific Method	Matrix	Collection Date
[CALC]		5090551-01	MW-6	Calculated Analyte	Water	09/24/2015
[CALC]		5090551-02	MW-7	Calculated Analyte	Water	09/24/2015
[CALC]		5090551-03	MW-8	Calculated Analyte	Water	09/24/2015
B5I2428		5090551-01	MW-6	EPA 300.0	Water	09/24/2015
B5I2428		5090551-02	MW-7	EPA 300.0	Water	09/24/2015
B5I2428		5090551-03	MW-8	EPA 300.0	Water	09/24/2015
B5I2821		5090551-01	MW-6	EPA 350.1	Water	09/24/2015
B5I2821		5090551-02	MW-7	EPA 350.1	Water	09/24/2015
B5I2821		5090551-03	MW-8	EPA 350.1	Water	09/24/2015
B512908		5090551-01	MW-6	EPA 351.2	Water	09/24/2015
B512908		5090551-02	MW-7	EPA 351.2	Water	09/24/2015
B5I2908		5090551-03	MW-8	EPA 351.2	Water	09/24/2015
B5I2907		5090551-01	MW-6	EPA 365.4	Water	09/24/2015
B5I2907		5090551-02	MW-7	EPA 365.4	Water	09/24/2015
B5I2907		5090551-03	MW-8	EPA 365.4	Water	09/24/2015
B512909	1990 - E	5090551-01	MW-6	EPA 365.4	Water	09/24/2015
B5I2909		5090551-02	MW-7	EPA 365.4	Water	09/24/2015
B5I2909		5090551-03	MW-8	EPA 365.4	Water	09/24/2015
B5I2430		5090551-01	MW-6	SM 4500-P E	Water	09/24/2015
B5I2430		5090551-02	MW-7	SM 4500-P E	Water	09/24/2015
B512430		5090551-03	MW-8	SM 4500-P E	Water	09/24/2015

CTDEP RCP Laboratory Analysis QA/QC Certification Form - November 2007 Laboratory Quality Assurance and Quality Control Guidance Reasonable Confidence Protocols

* Additional charge may apply. ** TAT begin	Phone #	Report To:	Tunde Sandor	City State	Address A De Contra 204	LAG Inc.	Cilent / nepot ung miconserver	Oli-14 / Bonorting Information	RELINQUISHED BY:	212			Soil VOCs Only (M=MeOH B= Risultate	CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, O-Other)	PRESERVATIVE (CI-HCI, N-HNO3, S-H2SO4, Na-NaOH, C=Cool, O-Other)				76-8	Am-7	Mw-6 -	Sample ID Depths (Units)	Bottle Request e-mail: bottleorders@cettabs.com	80 Lupes Drive Tel: (203) 377-9984 Stratford, CT 06615 Fax: (203) 377-9952		•			
ns when the samples are received at	Fax #		tSandor@lbg Ut. Um E-mail		H Shutton CT OLE HYC				1	$\sum_{\text{BECEIVED BY:}} () () () () () () () () () () () () () $	E TUL ECENTRONY	RECEIVED BY	W=Water F= <u>Finite</u> E=Encore)	-Vial, O-Other)	4, Na-NaOH, C=Cool, O-Other)				X 855 W	1025 00	9/24/08/55 12	Collection Date/Time	C=Cassette Day *	A=Air S=Soil W=Water DW=Drinking	Matrix	COMPLETE ENVIRONMENTAL TESTING, INC.			
TAT begins when the samples are received at the Lab and all issues are resolved. TAT for samples received are to purit, with sources are received at the Lab and all issues are resolved. TAT for samples received are to purit, with sources are received at the table and all issues are resolved. TAT for samples received are to purit, with sources are received at the table and all issues are resolved. TAT for samples received are to purit, with sources are received at the table and all issues are resolved. TAT for samples received are to purit, with sources are received at the table and all issues are resolved. TAT for samples received are to purit, with sources are received at the table are received. TAT for samples received at the table are received. TAT table are received at the table are received at table are received at the table are received at the table are received at table are received a	Temp Upon			Data Report XPDF		Location: Southbourg	Project Beta	Project Contact:				NOTES:										2-3 C Std (5- 8260 8260 8260 624 CT F 8270		atics ens st	Turnaround Organics				I
Af for samples received alter o prin.			X GA ⊡GB	EDD - Specify Format	Std Site Specific (MS/MSD) *	4	Project #	unde sendor PO#.	Project Information													13 F 8 R TO TC SP Fle Lat	riority CRA TAL	red	Metals (check all that apply)		CUAIN OF CLISTODY Client:	Volati	-
	will start on the next business day				ABCP				ation											XXXXXX		× An	mor trate					Date and Time in Freezer	
	REV. 06/14																				2	<u> </u>	OTAL #	OFCON		 Pag			6

14.1 (

80 Lupes Drive Stratford, CT 06615

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client:

Ms. Tunde Sandor Leggette, Brashears & Graham 4 Research Dr. Suite 204 Shelton, CT 06484

Analytical Report CET# 5090552

Report Date:September 28, 2015 Project: BETA, Southbury

Connecticut Laboratory Certificate: PH 0116 Massachussetts laboratory Certificate: M-CT903

New York Certification: 11982 Rhode Island Certification: 199

Page 1 of 5

Project: BETA, Southbury

SAMPLE SUMMARY

The sample(s) were received at 1.6°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
MW-5	5090552-01	Water	9/24/2015 10:55	09/24/2015
MW-6	5090552-02	Water	9/24/2015 9:55	09/24/2015
MW-7	5090552-03	Water	9/24/2015 10:25	09/24/2015
MW-8	5090552-04	Water	9/24/2015 8:55	09/24/2015

Testing Performed at: PH-0787

Analyte: Fecal Coliform, Membrane Filter [SM 9222 D]

Analyst: subcontract

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5090552-01	MW-5	10	0	CFU/100 ml	1		09/24/2015	09/24/2015 00:00	
5090552-02	MW- 6	<1	0	CFU/100 ml	1		09/24/2015	09/24/2015 00:00	
5090552-03	MW-7	>2419	0	CFU/100 ml	1		09/24/2015	09/24/2015 00:00	
5090552-04	MW-8	<1	0	CFU/100 ml	1		09/24/2015	09/24/2015 00:00	

CET # : 5090552 Project: BETA, Southbury

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

LAP

David Ditta Laboratory Director

Report Comments:

Sample Result Flags:

E- The result is estimated, above the calibration range.

H- The surrogate recovery is above the control limits.

L- The surrogate recovery is below the control limits.

B- The compound was detected in the laboratory blank.

P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.

D- The RPD between the sample and the sample duplicate is high. Sample Homogenity may be a problem.

+- The Surrogate was diluted out.

- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.

I- The Analyte exceeds %RSD limits for the Initial Calibration. This is a non-directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at the specified detection limit All analyses were performed in house unless a Reference Laboratory is listed. Samples will be disposed of 30 days after the report date.

CET # : 5090552	
-----------------	--

Project: BETA, Southbury

CERTIFICATIONS Certified Analyses included in this Report Certifications Analyte No certified Analyses included in this Report

-21

Complete Environmental Testing operates under the following certifications and accreditations:

Code	Description	Number	Expires	

Address * Above * City CET Report To: * Alogy C* Phone #	Soil VOCs Only (M=MeOH B= Bisu HEDNOUISHED BY: RELINQUISHED BY: RELINQUISHED BY: RELINQUISHED BY: Client / Reporting Information	PRESERVATIVE (CL-HCI, N-HNC CONTAINER TYPE (P-Plastic, G	Stratford, CT 06615 Stratford, CT 06615 Bottle Request e-mail: bottleorders@cettabs.com Bottle Request e-mail: bottleorders@cettabs.com MIW - 1 MIW - 1 MIW - 1 MIW - 1 MIW - 1 MIW - 1
State Zip Fax #		PRESERVATIVE (CI-HCI, N-HNO ₃ , S-H ₂ SO ₄ , Na-NaOH, C-Cool, O-Other) CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, O-Other) CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, O-Other)	IFE ENVIRONMENTAL TE ENVIRONMENTAL TE Machine Solici Solic
State Zip QA/QC Istel State Zip Data Report DDF EDD - Specify Format Image: Content of the state Image			X X Std (5-7 Days) Image: Constraint of the state of
Site Specific (MS/MSD)* XTPCP Fkg* DOAW* -Specify Format DOAW* DOAW* -Specify Format NY Interpreting the specific data specific d	Project Information Po # Project # Project #		TCLP Xali that spop SPLP SPLP Field Filtered CET: Lab To Filter Additional Analysis X X X Fecal Coliferin X X X Fecal Coliferin

чч

80 Lupes Drive Stratford, CT 06615

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client:

Ms. Tunde Sandor Leggette, Brashears & Graham 4 Research Dr. Suite 204 Shelton, CT 06484

Analytical Report CET# 5100114

Report Date:October 14, 2015 Project: BETA, Southbury

Connecticut Laboratory Certificate: PH 0116 Massachussetts laboratory Certificate: M-CT903

New York Certification: 11982 Rhode Island Certification: 199 Project: BETA, Southbury

SAMPLE SUMMARY

The sample(s) were received at 2.5°C.

This report contains analytical data associated with following samples only

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
PZ-B	5100114-01	Water	10/01/2015 10:45	10/06/2015

1.231 _

Analyte: Total Kjeldahl Nitrogen (TKN) [EPA 351.2]

Analyst: CC

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5100114-01	PZ-B	9.0	1.0	mg/L	1	B5J1309	10/14/2015	10/14/2015 13:05	

CET # : 5100114 Project: BETA, Southbury

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

LAP

David Ditta Laboratory Director

Report Comments:

Sample Result Flags:

E- The result is estimated, above the calibration range.

H- The surrogate recovery is above the control limits.

L- The surrogate recovery is below the control limits.

B- The compound was detected in the laboratory blank.

P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.

D- The RPD between the sample and the sample duplicate is high. Sample Homogenity may be a problem.

+- The Surrogate was diluted out.

- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.

I- The Analyte exceeds %RSD limits for the Initial Calibration. This is a non-directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at the specified detection limit

All analyses were performed in house unless a Reference Laboratory is listed. Samples will be disposed of 30 days after the report date.

Project: BETA, Southbury

	CERTIFICATIONS	
Certified Analyses included in this Report		
Analyte	Certifications	
SPA 351.2 in Water		
Total Kjeldahl Nitrogen (TKN)	СТ	

Complete Environmental Testing operates under the following certifications and accreditations:

Code	Description	Number	Expires
CT	Connecticut Public Health	PH0116	09/30/2016

Phone # Fax #	Haport To: E-mail	State		Company Name	Client / Reporting Information	RELINQUISHED BY: DATE/TIME RECEIVED BY:	RELINQUISHED BY: DATE/TIME RECEIVED BY: DATE/TIME RECEIVED BY:	(M=MeOH B=Sodium W=Water	CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, O-Other)	PRESERVATIVE (CI-HCI, N-HNO3, S-H2SO4, Na-NaOH, C=Cool, O-Other)				PZ-B /10/1/32/04/5 W	Sample ID Sample Collection where the D Depths Date/Time Specify S Next D D Date/	ay* (check	Matrix	COMPLETE ENVIRONMENTAL TESTING, INC.	
Temp Upon D Evidence of O N SHEET I OF Hecenpt D Sec Cooling N SHEET OF	RSR Reporting Limits (check one) KGA GB SWP Other Laboratory Certification Needed (check one) CT NY RI MA	- Specify Format CXCC Other	: Southbary (T collector(s): 1	ALL	Project Contact Lunde Scindor PO #:		NOTES:								6260 H 624 CT ETH 8270 C 8270 P PCBs Pesticic 13 Price 8 RCR TOTAL TCLP SPLP Field F Lab To	Days) T List romatics alogens PH T List NAs des prity Poll A 	Organics Metals (check all that apply) Additional Analysis		Volatile Soils Only:

* Additional charge may apply. ** TAT begins when the samples are received. ć

2

_

_

1993 - L

성의 _ 영화

80 Lupes Drive Stratford, CT 06615

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client:

Ms. Tunde Sandor Leggette, Brashears & Graham 4 Research Dr. Suite 204 Shelton, CT 06484

Analytical Report CET# 5100416

Report Date:October 19, 2015 Project: BETA, Southbury

Connecticut Laboratory Certificate: PH 0116 Massachussetts laboratory Certificate: M-CT903

New York Certification: 11982 Rhode Island Certification: 199

Page 1 of 6

Project: BETA, Southbury

SAMPLE SUMMARY

The sample(s) were received at 4.0°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
MW-3	5100416-01	Water	10/01/2015 9:20	10/01/2015
MW-4	5100416-02	Water	10/01/2015 9:55	10/01/2015
PZ-A	5100416-03	Water	10/01/2015 10:25	10/01/2015
PZ-B	5100416-04	Water	10/01/2015 10:45	10/01/2015

Testing Performed at: PH0509

Analyte: Fecal Coliform, Membrane Filter [SM 9222 D]

Analyst: subcontract

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5100416-01	MW-3	3	- 1	CFU/100 ml	i		10/01/2015	10/01/2015 00:00	
5100416-02	MW-4	2	L	CFU/100 ml	1		10/01/2015	10/01/2015 00:00	
5100416-03	PZ-A	0	1	CFU/100 ml	L		10/01/2015	10/01/2015 00:00	
5100416-04	PZ-B	0	1	CFU/100 ml	1		10/01/2015	10/01/2015 00:00	

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

1.A

David Ditta Laboratory Director

Report Comments:

Sample Result Flags:

E- The result is estimated, above the calibration range.

H- The surrogate recovery is above the control limits.

- L- The surrogate recovery is below the control limits.
- B- The compound was detected in the laboratory blank.
- P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
- D- The RPD between the sample and the sample duplicate is high. Sample Homogenity may be a problem.
- +- The Surrogate was diluted out.
- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.
- I- The Analyte exceeds %RSD limits for the Initial Calibration. This is a non-directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at the specified detection limit

All analyses were performed in house unless a Reference Laboratory is listed. Samples will be disposed of 30 days after the report date.

Project: BETA, Southbury

		CERI	IFICATIONS			
Certified Analyse	es included in this Report					
Analyte		Certifications				
to certified Ana	lyses included in this Report					
				÷ .		
Complete Envi	ronmental Testing operates under t	he following certifications and accredita	tions:			
			Number		Expires	

Complete Environmental Testing, Inc. 80 Lupes Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

Page 4 of 6

* Additional charge may apply. ** TAT begins when the samples are received at the Lab and all issues are resolved. TAT for samples received after 3 p.m. will start on the next business day. HELINOUISHED BY: CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, O-Other) RELINQUISHED BY: PRESERVATIVE (CI-HCI, N-HNO3, S-H2SO4, Na-NaOH, C=Cool, O-Other) Company Name Soil VOCs Only Phone # Ş **Client / Reporting Information** Report To: Address 80 Lupes Drive Stratford, CT 06615 e-mail: cet1@cetlabs.com Bottle Request e-mail: bottleorders@cetlabs.com * abovet P7-124 *ahovc* <u>Mw-4</u> MW-3 Sample ID b (M=MeOH DATENTIME B= Bisulfate DATE/TIME DATETIME Tel: (203) 377-9984 Fax: (203) 377-9952 State Sample Depths (Units) W=Water F= Vial / Fax # Collection ¢. Date/Time <u>الليق 20 مالل</u> COMPLETE ENVIRONMENTAL TESTING, INC. RECEIVED BY: RECEIVED BY: RECEIVED BY: 955 った 1025 E-mail E=Encore) E 뉨 Ś 10/11/5 1150 Same Day 7 (check one) Turnaround Next Day * Time " 2-3 Days × \times Sid (5-7 Days) B260 CT/List NOTES: O,A/QC Temp Upon Receipt Data Report Location: Journa + Project Project Contact: **RSR Reporting Limits (check one)** CHAIN OF CUSTODY 8260 Animalics aboratory Certification Needed (check one) 2 8260 Halogens Organics 624 HT X CT ETPH 8270 CT List 8270 PNAs ් □ Std PCBs EDD - Spealty Format_ Pesticides 13 Priority Poll Metals (check all that apply) 4 Evidence of Cooling: ମ କୁ Site Specific (MS/MSD) * 8 RCRA TOTAL Project Information TCLP EO CB SPLP х q ~ Field Filtered Collector(s): 10 mela Po # Lab To Filter z Project #: Client: CET: Volatile Soils Only: D SMb ⊑ ₹ XX X Culiform 'Þ Fora 1 SHEET Date and Time in Freezer П Я Additional X RCP Pkg * Other. Other Lind Analysis ę DOAM * REV. 06/14 TOTAL # OF CONT. NOTE #

Page 5 of 6

Additional charge may apply. CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, O-Other) Soll VOCs Only PRESERVATIVE (CI-HCI, N-HNOs, S-H2SO4, Na-N2OH, C=Cool, O-Other) ŝ Company Name **Client / Reporting Information** RELINQUISHED BY: HEYNOUISHED BY: # enorld HAME & TUT Report To Address 80 Lupes Drive Stratford, CT 06615 e-mail: cet1@cetfabs.com Bottle Request e-mail: bottleorders@cetfabs.com * abovet - 20 Mw-4 MW-3*above * 12 Sample ID þ (M=MeOH ** TAT begins when the samples are received at the Lab and all issues are resolved. TAT for samples received after 3 p.m. will start on the next business day. DATE/IME B= Bisulfate DATE/TIME DATENTIME Tel: (203) 377-9984 Fax: (203) 377-9952 State Depths (Units) Sample W=Water F= Vial A E Fax # Date/Time Collection Z <u>hhre920</u> COMPLETE ENVIRONMENTAL TESTING, INC. RECEIVED BY: **HECEIVED BY:** RECEIVED BY: 220 った 1025 E-mail Solid Wipe Other (Specify) Matrix A=Alr S=Soil W=Waler DW=Drinking Waler Waler E=Encore) C ĥ í 10/1/12 11 5C Same Day (check one) Turnaround Next Day Time ** 2-3 Days * XX Std (5-7 Days) \sim 8260 CT/Liet NOTES QA/QC Data Report DPDF CHAIN OF CUSTODY Temp Upon Receipt RSR Reporting Limits (check one) Location: Project: Project Contact: Laboratory Certification Needed (check one) 8260 Animatics ri e 8260 Halogens Organics 624 HT Y Fundymor CT ETPH 8270 CT List Sta C 8270 PNAs റ് PCBs EDD - Spediy Format_ Pesticides Metals (check all that apply) 13 Priority Poll 4 Evidence of Cooling: ⊡ GA Site Specific (MS/MSD) * **8 RCRA** TOTAL Project Information TCLP GB SPLP ж с ~ Field Filtered 78 # Lab To Filter z Collector(s): tomela Project #: Client: Volatile Soils Only: CET: D SWP Ľ ₹ XXXX Culifurm Feco ì SHEET Date and Time in Freezer Additional E Z RCP Pkg * Other, Lind Analysis ⊒ MA q DOWN . REV. 05/14 TOTAL # OF CONT. NOTE #

Page 6 of 6

80 Lupes Drive Stratford, CT 06615

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client:

Ms. Tunde Sandor Leggette, Brashears & Graham 4 Research Dr. Suite 204 Shelton, CT 06484

Analytical Report CET# 5100463

Report Date:October 21, 2015 Project: BETA, Southbury

Connecticut Laboratory Certificate: PH 0116 Massachussetts laboratory Certificate: M-CT903

New York Certification: 11982 Rhode Island Certification: 199 Project: BETA, Southbury

SAMPLE SUMMARY

The sample(s) were received at 3.1°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
MW-1	5100463-01	Water	9/23/2015 9:35	10/01/2015
MW-2	5100463-02	Water	9/23/2015 10:35	10/01/2015

Testing Performed at: PH-0509

Analyte: Fecal Coliform, Membrane Filter [SM 9222 D]

Analyst: subcontract

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5100463-01	MW-1	0	1 ·	CFU/100 ml	1		09/23/2015	09/23/2015 00:00	
5100463-02	MW-2	0	I	CFU/100 ml	1		09/23/2015	09/23/2015 00:00	

CET # : 5100463 Project: BETA, Southbury

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

LAP

David Ditta Laboratory Director

Report Comments:

Sample Result Flags:

E- The result is estimated, above the calibration range

H- The surrogate recovery is above the control limits.

L- The surrogate recovery is below the control limits.

B- The compound was detected in the laboratory blank.

P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.

D- The RPD between the sample and the sample duplicate is high. Sample Homogenity may be a problem.

+- The Surrogate was diluted out.

- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.

I- The Analyte exceeds %RSD limits for the Initial Calibration. This is a non-directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at the specified detection limit

All analyses were performed in house unless a Reference Laboratory is listed. Samples will be disposed of 30 days after the report date.

ЗÌ

Project: BETA, Southbury

CERTIFICATIONS
Certified Analyses included in this Report

 Analyte
 Certifications

 No certified Analyses included in this Report

12

Complete Environmental Testing operates under the following certifications and accreditations:

Code	Description		Number	Expires
		·		

Phone #	?	л. Т		1	Сотралу Иате	Client / Reporting Information	RELINQUISHED BY:	RELINQUISHED BY:	N. S. S.	(M=MeOH		PRESERVATIVE (CI-HCI, N-HNO						Sample ID	80 Lupes Drive Tel: (203) 377-9984 Stratford, CT 06615 Fax: (203) 377-9952 e-mail: cett @cettabs.com Bottle Request e-mail: bottleorders@cettabs.com			5100463	
Fax #	E-mail	State				tion	DATE/TIME RECEIVED BY:	11 5 2012	DATE/TIME RECEIVED BY:	B=Bisulfate W=Water F= Empty	G-Glass, V-Vial, O-Other)	(CI-HCI, N-HNO3, S-H2SO4, Na-NaOH, C=Cool, O-Other)				Stranger 1	329CONTOR	Sample Depths (Units) Date/Time	Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cett @cettabs.com bottleorders @cettabs.com			6	
		Zp						Br: 9/ 9/ 5	BY:	E-Encore)	χ.)-Other)					5	<u>لَهُ الْحَمْنِ مَنْ الْحَمْنِ الْحَمْنِ مَنْ الْحَمْنِ الْحَمْنِ مَنْ الْحَمْنِ لَحْمَ</u>	Time **	Matrix Turnay	COMPLETE ENVIRONMENTAL TESTING. INC.		
Laboratory Certification Needed (check one) Temp Upon Evide Borolot °C Coolir	RSR Reporting Limits (check one)	port PDF		Location: XIC In VICY	Project DR CTA	Project Contact: Krister, Tursda			NOTES:									8260 Ai 8260 Hi 624 CT ETF 8270 C 8270 P PCBs Pestick	romatics alogens PH T List NAs des	Organics	CHAIN OF CU		
Evidence of Y N			□ Site Specific (MS/MSD) *	Collector(s):	Project #:		Project Information											8 RCR TOTAL TCLP SPLP Field F Lab To	ntty Poll A Illtered Filter	Metals (check all that apply)			Volatile
			ACP Pkg * DOAW *	s: Crod, Und			112													Additional Analysis		Date and Time in Freezer	Volatile Soils Only:

Page 5 of 5

201

5.2

80 Lupes Drive Stratford, CT 06615

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client:

Ms. Tunde Sandor Leggette, Brashears & Graham 4 Research Dr. Suite 204 Shelton, CT 06484

Analytical Report CET# 5110171

Report Date:November 19, 2015 Project: BETA, Southbury

Connecticut Laboratory Certificate: PH 0116 Massachussetts laboratory Certificate: M-CT903

New York Certification: 11982 Rhode Island Certification: 199

SAMPLE SUMMARY

The sample(s) were received at 13.9°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
	5110171-01	Water	11/06/2015 10:10	11/06/2015
MW-2	5110171-02	Water	11/06/2015 9:00	11/06/2015
MW-3	5110171-03	Water	11/06/2015 12:20	11/06/2015
PZ-A	5110171-04	Water	11/06/2015 11:05	11/06/2015
PZ-B	5110171-05	Water	11/06/2015 10:50	11/06/2015

-4

Project: BETA, Southbury

Analyte: Total Nitrogen [Calculated Analyte]

Analyst: Various

THE HUNDER CARD

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL.	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5110171-01	MW-1	21	1.2	mg/L	1				
5110171-02	MW-2	12	1.2	mg/L	Ę.,				
5110171-03	MW-3	4.8	1.2	mg/L	1				
5110171-04	PZ-A	3.4	1.2	mg/L	1				
5110171-05	PZ-B	18	1.2	mg/L	L				

Analyte: Nitrite as N [EPA 300.0]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5110171-01	MW-I	NĎ	0.10	mg/L	1	B5K0907	11/06/2015	11/06/2015 16:46	
5110171-02	MW-2	ND	0.10	mg/L	1	B5K0907	11/06/2015	11/06/2015 17:19	
5110171-03	MW-3	ND	0.10	mg/L	1	B5K0907	11/06/2015	11/06/2015 17:52	
5110171-04	PZ-A	ND	0.10	mg/L	1	B5K0907	11/06/2015	11/06/2015 18:25	
5110171-05	PZ-B	ND	0.10	mg/L	1	B5K0907	11/06/2015	11/06/2015 18:58	

Analyte: Nitrate as N [EPA 300.0]

Analyst: CC

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5110171-01	MW-1	ND	0,10	mg/L	1	B5K0907	11/06/2015	11/06/2015 16:46	
5110171-02	MW-2	ND	0,10	mg/L	i	B5K0907	11/06/2015	11/06/2015 17:19	
5110171-03	MW-3	ND	0.10	mg/L	1	B5K0907	11/06/2015	11/06/2015 17:52	
5110171-04	PZ-A	ND	0.10	mg/L	1	B5K0907	11/06/2015	11/06/2015 18:25	
5110171-05	PZ-B	ND	0.10	mg/L	1	B5K0907	11/06/2015	11/06/2015 18:58	

Analyte: Ammonia as N [EPA 350.1]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units .	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5110171-01	MW-1	21	0.10	mg/L	1	B5K1317	11/13/2015	11/13/2015 16:21	
5110171-02	MW-2	12	0.10	mg/L	1	B5K1317	11/13/2015	11/13/2015 16:21	
5110171-03	MW-3	4.2	0.10	mg/L	1	B5K1317	1/13/2015	11/13/2015 16:21	
5110171-04	PZ-A	0.16	0,10	mg/L	1	B5K1317	11/13/2015	11/13/2015 16:21	
5110171-05	PZ-B	1,3	0.10	mg/L	1	B5K1317	11/13/2015	11/13/2015 16:21	

Analyte: Phosphorous, Total [EPA 365.4]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5110171-01	MW-1	2.3	0.10	mg/L	1	B5K1709	11/18/2015	11/18/2015 13:48	
5110171-02	MW-2	2.3	0.10	mg/L	1	B5K1709	11/18/2015	11/18/2015 13:48	
5110171-03	MW-3	ND	0.10	mg/L	1	B5K1709	11/18/2015	11/18/2015 13:48	
5110171-04	PZ-A	0.44	0.10	mg/L	1	B5K1709	11/18/2015	11/18/2015 13:48	
5110171-05	PZ-B	8.1	1.0	mg/L	10	B5K1709	11/18/2015	11/18/2015 13:48	

Analyte: Orthophosphate as P [SM 4500-P E]

Analyst: CC

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5110171-01	MW-1	1.4	1.0	mg/L	10	B5K0908	11/06/2015	11/06/2015 16:15	
5110171-02	MW-2	2.3	1.0	mg/L	10	B5K0908	11/06/2015	11/06/2015 16:15	
5110171-03	MW-3	ND	0.10	mg/L	1	B5K0908	11/06/2015	11/06/2015 16:15	
5110171-04	PZ-A	ND	0,10	mg/L	1	B5K0908	11/06/2015	11/06/2015 16:15	
5110171-05	PZ-B	ND	0.10	mg/L	l	B5K0908	11/06/2015	11/06/2015 16:15	

CET # : 5110171 Project: BETA, Southbury

Analyte: Total Kjeldahl Nitrogen (TKN) [EPA 351.2]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5110171-01	MW-I	21	1.0	mg/L	1	B5K1710	11/18/2015	11/18/2015 16:54	
5110171-02	MW-2	12	1.0	mg/L	1	B5K1710	11/18/2015	11/18/2015 16:54	
5110171-03	MW-3	4.8	1.0	mg/L	· 1	B5K1710	11/18/2015	11/18/2015 16:54	
5110171-04	PZ-A	3.4	1.0	mg/L	1	B5K1710	11/18/2015	11/18/2015 16:54	
5110171-05	РZ-В	18	1.0	mg/L	I	B5K1710	11/18/2015	11/18/2015 16:54	

Analyte: Phosphorous, Total Dissolved [EPA 365.4]

Analyst: CC Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
5110171-01	MW-1	0,19	0.10	mg/L	1	B5K1711	11/18/2015	11/18/2015 13:52	
5110171-02	MW-2	0.73	0.10	mg/L	1	B5K1711	11/18/2015	11/18/2015 13:52	
5110171-03	MW-3	0.20	0.10	mg/L	1	B5K1711	11/18/2015	11/18/2015 13:52	
5110171-04	PZ-A	0.18	0.10	mg/L	L	B5K1711	11/18/2015	11/18/2015 13:52	
5110171-05	PZ-B	ND	0,10	mg/L	1	B5K1711	11/18/2015	11/18/2015 13:52	

QUALITY CONTROL SECTION

Batch B5K0907 - EPA 300.0

Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RP D Limit	Notes
Blank (B5K0907-BLK1)		Prepared: 11/6/2015 Analyzed: 11/6/2015							
Nitrate as N	ND	0.10							
Nitrite as N	ND	0.10							
LCS (B5K0907-BS1)					Prepared: 11	1/6/2015 Analy:	zed: 11/6/20	[5	
Nitrate as N	5.1	0.10	5,000		102	80 - 120			
Nitrite as N	5.0	0,10	5,000		101	80 - 120			

Complete Environmental Testing, Inc. 80 Lupes Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

Page 6 of 15

Project: BETA, Southbury

Batch B5K0908 - SM 4500-P E								
Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
				Prepared: 1	1/6/2015 Analy:	zed: 11/6/202	15	
ND	0.10							
				Prepared: 1	1/6/2015 Analy:	zed: 11/6/202	15	
0.303	0.10	0.326		92.9	80 - 120			
	Source: 5110	171-03		Prepared: 1	1/6/2015 Analy:	zed: 11/6/201	15	
ND	0.10		ND				20	
	(mg/L) ND 0.303	Result (mg/L) RL (mg/L) ND 0.10 0.303 0.10 Source: 5110	Result (mg/L) RL (mg/L) Spike Level ND 0.10 0.303 0.10 0.326 Source: 5110171-03 5110171-03 5110171-03 5110171-03	Result (mg/L)RL (mg/L)Spike LevelSource ResultND0.100.3260.3030.100.326Source: 5110171-03	Result (mg/L)RL (mg/L)Spike LevelSource Result% RecND0.10Prepared: 10.3030.100.32692.9Source: 5110171-03Prepared: 1	Result (mg/L) RL (mg/L) Spike Level Source Result % Rec % Rec % Rec Limits ND 0.10 Prepared: 11/6/2015 Analy: 0.303 Prepared: 11/6/2015 Analy: 92.9 80 - 120 Source: 5110171-03 Prepared: 11/6/2015 Analy: Prepared: 11/6/2015 Analy:	Result (mg/L) RL (mg/L) Spike Level Source Result % Rec % Rec Limits RPD ND 0.10 Prepared: 11/6/2015 Analyzed: 11/6/2015 Prepared: 11/6/2015 Analyzed: 11/6/2015 Prepared: 11/6/2015 Analyzed: 11/6/2015 0.303 0.10 0.326 92.9 80 - 120 Source: 5110171-03	Result (mg/L) RL (mg/L) Spike Levei Source Result % Rec % Rec % Rec Limits RPD RPD Limit ND 0.10 Prepared: 11/6/2015 Analyzed: 11/6/2015 0.303 0.10 0.326 92.9 80 - 120 Source: 5110171-03 Prepared: 11/6/2015 Analyzed: 11/6/2015 Prepared: 11/6/2015 Analyzed: 11/6/2015

Complete Environmental Testing, Inc.

80 Lupes Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

Page 7 of 15

Project: BETA, Southbury

Batch B5K1317 - EPA 350.1									
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B5K1317-BLK1)	Prepared: 11/13/2015 Analyzed: 11/13/2015								
Ammonia as N	ND	0.10							
LCS (B5K1317-BS1)		Prepared: 11/13/2015 Analyzed: 11/13/2015							
Ammonia as N	5.3	0.10	5,000		105	80 - 120			

Project: BETA, Southbury

Batch B5K1709 - EPA 365.4									
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B5K1709-BLK1)				•	Prepared: 1	1/18/2015 Anal	yzed: 11/18/	2015 -	
Phosphorous, Total	ND	0.10							
LCS (B5K1709-BS1)					Prepared: 1	1/18/2015 Anal	lyzed: 11/18/	2015	
Phosphorous, Total	0.459	0.10	0.509		90.3	80 - 120			
Duplicate (B5K1709-DUP1)		Source: 5110	171-02		Prepared: 1	1/18/2015 Ana	lyzed: 11/18/	2015	
Phosphorous, Total	2.44	0.10		2.30			5.91	20	
Matrix Spike (B5K1709-MS1)		Source: 5110)171-02		Prepared: 1	1/18/2015 Ana	lyzed: 11/18/	2015	
Phosphorous, Total	2.82	0.10	0.509	2,30	102	80 - 120			

Project: BETA, Southbury

19

Batch B5K1710 - EPA 351.2									
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPĎ	RPD Limit	Notes
					Prepared: 1	1/18/2015 Anal	yzed: 11/18/	2015	
Blank (B5K1710-BLK1) Fotal Kjeldahl Nitrogen (TKN)	ND	1.0							
LCS (B5K1710-BS1)					Prepared: 1	1/18/2015 Ana	lyzed: 11/18/	2015	
Total Kjeldahl Nitrogen (TKN)	5.35	1.0	5.000		107	80 - 120			
Duplicate (B5K1710-DUP1) Source: 5110171-02 Prepared: 11/18/2015 Analyzed: 11/18/2015									
Total Kjeldahl Nitrogen (TKN)	12.8	1.0		12.0			6.45	20	

Project: BETA, Southbury

Batch B5K1711 - EPA 365.4									
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B5K1711-BLK1) Prepared: 11/18/2015 Analyzed: 11/18/2015									
Phosphorous, Total Dissolved	ND	0.10							
LCS (B5K1711-BS1)					Prepared: 1	1/18/2015 Anal	yzed: 11/18/2	2015	
Phosphorous, Total Dissolved	0.466	0.10				80 - 120			L
Duplicate (B5K1711-DUP1)	Source: 5110171-02 Prepared: 11/18/2015 Analyzed: 11/18/2015								
Phosphorous, Total Dissolved	0.623	0.10		0.730	-		15.8	20	

CET # : 5110171 Project: BETA, Southbury

80 Lupes Drive

Stratford, CT 06615

Tel: (203) 377-9984 Fax: (203) 377-9952 email: cet1@cetlabs.com

Quality Control Definitions and Abbreviations

An Analyte added to each sample or sample extract. An internal standard is used to monitor retention Internal Standard (IS) time, calculate relative response, and quantify analytes of interest. The % recovery for non-tarer organic compounds that are spiked into all samples. Used to determine Surrogate Recovery method performance. An analytical standard analyzed with each set of samples to verify initial calibration of the system Continuing Calibration Samples that are analyzed together with the same method, sequence and lot of reagents within the same Batch time period. Not detected ND Reporting Limit RL Multiplier added to detection levels (MDL) and/or sample results due to interferences and/or high Dilution concentration of target compounds. Result from the duplicate analysis of a sample. Duplicate Amount of analyte found in a sample. Result Amount of analyte added to a sample Spike Level Amount of analyte found including amount that was spiked. Matrix Spike Result Amount of analyte foun in duplicate spikes including amount that was spike. Matrix Spike Dup % Recovery of spiked amount in sample. Matrix Spike % Recovery % Recovery of spiked duplicate amount in sample. Matrix Spike Dup % Recovery Relative percent difference between Matrix Spike and Matrix Spike Duplicate RPD Method Blank that has been taken through all steps of the analysis. Blank Laboratory Control Sample percent recovery. The amount of analyte recovered from a fortified sample. LCS % Recovery A range within which specified measurements results must fall to be compliant. **Recovery Limits Calibration Verification** CC

Flags:

- H- Recovery is above the control limits
- L- Recovery is below the control limits
- B- Compound detected in the Blank
- P- RPD of dual column results exceeds 40%
- #- Sample result too high for accurate spike recovery.

New York Certification 11982 Rhode Island Certification 199

Connecticut Laboratory Certification PH0116 Massachussets Laboratory Certification M-CT903

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

LA

David Ditta Laboratory Director

Report Comments:

Sample Result Flags:

E- The result is estimated, above the calibration range.

H- The surrogate recovery is above the control limits.

L- The surrogate recovery is below the control limits.

B- The compound was detected in the laboratory blank.

P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.

D- The RPD between the sample and the sample duplicate is high. Sample Homogenity may be a problem.

+- The Surrogate was diluted out.

- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.

I- The Analyte exceeds %RSD limits for the Initial Calibration. This is a non-directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at the specified detection limit

All analyses were performed in house unless a Reference Laboratory is listed. Samples will be disposed of 30 days after the report date.

Project: BETA, Southbury

	CERTIFICATIONS	
Certified Analyses included in this Report	· · · · · ·	
Analyte	Certifications	
EPA 300.0 in Water		
Nitrate as N	СТ	· .
Nímite as N	СТ	•
EPA 350.1 in Water		
Ammonia as N	CT	
EPA 351.2 in Water		
Total Kjeldahl Nitrogen (TKN)	СТ	
EPA 365.4 in Water		
Phosphorous, Total	CT	
SM 4500-P E in Water		
Orthophosphate as P	CT	

- 19

÷.

승규는 교

Complete Environmental Testing operates under the following certifications and accreditations:

Code	Description	Number	Expires
СТ	Connecticut Public Health	PH0116	09/30/2016

CHAIN OF CUSTO Companies Matrix Imme Time : Time : Serve Bion Organics (check one) Metals (an United Serve Diversity) Matrix Imme Time : Check one) Organics Metals (an United Serve Diversity) Matrix Imme Time : Check one) Metals (an United Serve Diversity) Metals (an United Serve Diversity) Matrix Imme Time : Check one) Metals (an United Serve Diversity) Metals (an United Serve Diversity) Matrix Imme Time : Check one) Metals (an United Serve Diversity) Metals (an United Serve Diversity) Matrix Imme Time : Serve Diversity) Next Diversity Serve Diversity) Metals (an United Serve Diversity) Matrix Imme Same Diversity Serve Diversity) Next Diversity Serve Diversity) Metals (an United Serve Diversity) Matrix Imme Same Diversity Serve Diversity) Next Diversity Serve Diversity) Metals (an Serve Diversity) Matrix Imme Sam Attrix Serve Diversity) Next Diversity Serve Diversity) Metals (an Serve Diversity) Matrix Imme Sam Attrix Serve Diversity) Metals (an Serve Diversity) Matrix Imme Sam Attrix Serve Diversity) Metals (an Serve Diversity) Matrix Imme Sam Attrix Serve Diversity) Matrix Imme Metals (an Serve Diversity) Matrix Imme Metal				80 Lupes Drive Stratford, CT 06615	e- Bottle Request e-mail: bo	Sample ID		Min/-1	M h/-7	M 141-2	C - C - C - C - C - C - C - C - C - C -	N-21		PRESERVATIVE (CI-HCI, N-HI	CONTAINER TYPECTP-Plastic, G-Glass, V-Vial, O-Other)	Soil VOCs Only (M=MeOH	RELINQUISHED BY: 11-6-	RELINQUISHED BY:	Client / Reporting Information	Company Name	LBG	conch hour		Shellon	TSOM dox	Phone #
MR, IR. CHAIN OF CUSTODY Cignitis Time : Interview Organics Metals (neex all that apply) Heck one) 2:3 Days* 2:3 Days* Heck one) 2:3 Days* 3:3 Days* Hecositi 2:3 Days* 2:3 Days*	MUSI FTF FWURDNMENTAL TEST		A=AIr	A=Aır S=Soil W≃Water	C=Cassette a	tion wipe other arme D	D'ale/ I II I e (speaity) ou	116-15 /1010		1220	1105	<u>-</u>		NO3, S-H2SO4, Na-NaOH, OCCol, O-Other)		W=Water F= Vial			mation				State Mr Louis			
Project informat TCLP Informat SPLP	CHAIN OF CU	Organics		tlics ons t	ys * Days) T List Irromat Ialoge PH CT List CT List PNAs Ides Dority P RA	2-3 Day al (5-7 I 3260 C 3260 A 3260 H 524 CT ET 624 CT ET 8270 C 8270 P 8270 P 8270 P 8270 P 8270 P 8270 P 8270 P 8270 P 8270 P											NOTES:		7		South bury	9	port XPDF DEDD-	ng Limits (check one)	Laboratory Certification Needed (che	n S S S S S S S S S S S S S S S S S S S
Additional Analysis SHEET DIANA OF Control of the spheress of the spheress of the spheress of the spheres of the sphere of	 Client:	· Add		r	Filtere o Filter TKM ania Le	TCLP SPLP Field f Lab Tc Tot 7 Ammo Hitra	< 2 4 4	- 7 - 7 - 7 - 7				1 4 4 4 4							Project Information P0 #	Project #:	Sando	HCP Pkg *		GB SWP Other		

in faring south and a state of the state of the

alge

80 Lupes Drive Stratford, CT 06615

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cetl@cetlabs.com

Client:

Ms. Tunde Sandor Leggette, Brashears & Graham 4 Research Dr. Suite 204 Shelton, CT 06484

Analytical Report CET# 6020202

Report Date:February 18, 2016 Project: BETA, Southbury

Connecticut Laboratory Certificate: PH 0116. Massachusetts laboratory Certificate: M-CT903

New York Certification: 11982 Rhode Island Certification: 199

Page 1 of 19

Project: BETA, Southbury

SAMPLE SUMMARY

The sample(s) were received at 3.0°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
	6020202-01	Water	2/10/2016 10:17	02/11/2016
MW-3	6020202-02	Water	2/10/2016 9:32	02/11/2016
MW-4	6020202-03	Water	2/10/2016 15:50	02/11/2016
MW-6	6020202-04	Water	2/10/2016 11:33	02/11/2016
MW-8	6020202-05	Water	2/10/2016 11:15	02/11/2016
MW-9	6020202-06	Water	2/09/2016 15:45	02/11/2016
MW-10	6020202-07	Water	2/10/2016 10:12	02/11/2016
MW-10 MW-11	6020202-08	Water	2/09/2016 15:56	02/11/2016
MW-12	6020202-09	Water	2/10/2016 12:00	02/11/2016
MW-12 MW-13	6020202-10	Water	2/10/2016 12:00	02/11/2016
PZ-A	6020202-11	Water	2/10/2016 14:45	02/11/2016
PZ-A PZ-B	6020202-12	Water	2/10/2016 10:20	02/11/2016

Project: BETA, Southbury

Analyte: Total Nitrogen [Calculated Analyte]

Analyst: Various

-Ľ

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
6020202-01	MW-2	14	1.2	mg/L	1				
6020202-02	MW-3	5.5	1.2	mg/L	I				
6020202-03	MW-4	2.8	1.2	mg/L	1				
6020202-04	MW-6	ND	1.2	mg/L	1				
6020202-05	MW-8	4.8	1.2	mg/L	1				
6020202-06	MW-9	12	1.2	mg/L	1				
6020202-07	MW-10	6.1	1.2	mg/L	1				
6020202-08	MW-11	ND	1.2	mg/L	1				
6020202-09	MW-12	98	10	mg/L	10				
6020202-10	MW-13	2.7	1.2	mg/L	I				
6020202-11	PZ-A	3.3	1.2	mg/L	1				
6020202-12	PZ-B	1.8	1.2	mg/L	l				

Analyte: Nitrite as N [EPA 300.0]

Analyst: CC

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
6020202-01		ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 14:08	
6020202-02	MW-3	NĎ	0.10	mg/L	I	B6B1116	02/11/2016	02/11/2016 14:24	
6020202-03	MW-4	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 14:41	
6020202-04	MW-6	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 14:57	
6020202-05	MW-8	ND	0.10	mg/L	I	B6B1116	02/11/2016	02/11/2016 16:04	
6020202-06	MW-9	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 15:14	
6020202-07	MW-10	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 16:20	
6020202-08	MW-11	ND	0,10	mg/L	1	B6B1116	02/11/2016	02/11/2016 15:30	
6020202-09	MW-12	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 16:37	
6020202-10	MW-13	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 16:53	
6020202-11	PZ-A	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 17:10	
6020202-12	PZ-B	ND	0.10	mg/L	L	B6B1116	02/11/2016	02/11/2016 17:26	

Project: BETA, Southbury

Analyte: Nitrate as N [EPA 300.0]

물리는 같은 관람을 보았는?

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
6020202-01	MW-2	ND	0.10	mg/L	1 .	B6B1116	02/11/2016	02/11/2016 14:08	
6020202-02	MW-3	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 14:24	
6020202-03	MW-4	2.8	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 14:41	
6020202-04	MW-6	0.38	0,10	mg/L	1	B6B1116	02/11/2016	02/11/2016 14:57	
6020202-04	MW-8	0.10	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 16:04	
	MW-9	ND	0.10	mg/L	I	B6B1116	02/11/2016	02/11/2016 15:14	
6020202-06		4.4	0.10	 mg/L	1	B6B1116	02/11/2016	02/11/2016 16:20	
6020202-07	MW-10			mg/L	1	B6B1116	02/11/2016	02/11/2016 15:30	
6020202-08	MW-11	ND	0.10	-					
6020202-09	MW-12	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 16:37	
6020202-10	MW-13	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 16:53	
6020202-11	PZ-A	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 17:10	
6020202-12	PZ-B	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 17:26	
0020202-12	120								

Analyte: Ammonia as N [EPA 350.1]

6020202-12

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
6020202-01	MW-2	12	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-01	MW-3	4.5	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-02	MW-4	ND	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-04	MW-6	0.20	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-05	MW-8	0.24	0,10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-06	MW-9	12	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-07	MW-10	0,13	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-08	MW-11	ND	0,10	mg/L	ŧ	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-09	MW-12	ND	0.10	mg/L	l	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-10	MW-13	2.6	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-11	PZ-A	0.50	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-12	PZ-B	0.23	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	

Analyst: CC

Analyte: Phosphorous, Total [EPA 365.4]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
6020202-01	MW-2	2.5	0.10	mg/L	1	B6B1606	02/17/2016	02/17/2016 14:00	
6020202-02	MW-3	ND	0.10	mg/L	1	B6B1606	02/17/2016	02/17/2016 14:00	
6020202-03	MW-4	ND	0.10	mg/L	1	B6B1606	02/17/2016	02/17/2016 14:00	
6020202-04	MW-6	ND	0.10	mg/L	i	B6B1606	02/17/2016	02/17/2016 14:00	
6020202-05	MW-8	29	1.0	mg/L	10	B6B1606	02/17/2016	02/17/2016 14:00	
6020202-06	MW-9	0.36	0.10	mg/L	1	B6B1606	02/17/2016	02/17/2016 14:00	
6020202-07	MW-10	0.87	0.10	mg/L	1	B6B1606	02/17/2016	02/17/2016 14:00	
6020202-08	MW-11	ND	0.10	mg/L	1	B6B1606	02/17/2016	02/17/2016 14:00	
6020202-09	MW-12	31	1.0	mg/L	10	B6B1606	02/17/2016	02/17/2016 14:00	
6020202-10	MW-13	ND	0.10	mg/L	1	B6B1606	02/17/2016	02/17/2016 14:00	
6020202-11	PZ-A	0.32	0.10	mg/L	1	B6B1606	02/17/2016	02/17/2016 14:00	
6020202-12	PZ-B	ND	0.10	mg/L	1	B6B1606	02/17/2016	02/17/2016 14:00	

Analyte: Orthophosphate as P [SM 4500-P E]

Analyst: CC

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
6020202-01	MW-2	0.74	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-02	MW-3	0.11	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 [5:11	
6020202-03	MW-4	ND	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-04	MW-6	ND	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-05	MW-8	0.85	01.0	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-06	MW-9	0.33	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-07	MW-10	0.13	0.10	mg/L	I	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-08	MW-11	0.16	0.10	mg/L	l	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-09	MW-12	ND	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-10	MW-13	ND	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-11	PZ-A	0.13	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-12	PZ-B	ND	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	

Project: BETA, Southbury

Analyte: Total Kjeldahl Nitrogen (TKN) [EPA 351.2]

[플라코프 소프로 수영법]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
6020202-01	MW-2	14	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-02	MW-3	5.5	1.0	mg/L	I	B6B1607	02/17/2016	02/17/2016 17:21	`
6020202-03	MW-4	ND	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-04	MW-6	ND	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-05	MW-8	4.7	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-06	MW-9	12	1.0	mg/L	ι	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-07	MW-10	. 1.7	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-08	MW-11	ND	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-09	MW-12	98	10	mg/L	10	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-10	MW-13	2.7	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-11	PZ-A	3.3	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-12	PZ-B	1.8	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	

Analyte: pH [SM 4500-H B]

pH analyzed in lab

-										
	Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
	6020202-01		6.59	NA	pH Units	1	B6B1204	02/11/2016	02/11/2016 16:16	
	6020202-02	MW-3	6.62	NA	pH Units	1	B6B1204	02/11/2016	02/11/2016 16:17	
	6020202-03	MW-4	6.91	NA	pH Units	1	B6B1204	02/11/2016	02/11/2016 16:19	
	6020202-04	MW-6	8.02	NA	pH Units	1	B6B1204	02/11/2016	02/11/2016 16:21	
	6020202-05	MW-8	7.97	NA	pH Units	I	B6B1204	02/11/2016	02/11/2016 16:22	
	6020202-06	MW-9	6.77	NA	pH Units	1	B6B1204	02/11/2016	02/11/2016 16:25	
	6020202-07	MW-10	6.59	NA	pH Units	L	B6B1204	02/11/2016	02/11/2016 16:27	
	6020202-08	MW-11	6.81	NA	pH Units	1	B6B1204	02/11/2016	02/11/2016 16:29	
	6020202-09	MW-12	6.43	NA	pH Units	1	B6B1204	02/11/2016	02/11/2016 16:33	
	6020202-10	MW-13	6.98	NA	pH Units	L	B6B1204	02/11/2016	02/11/2016 16:40	
	6020202-11	PZ-A	10.0	NA	pH Units	1	B6B1204	02/11/2016	02/11/2016 16:46	
	6020202-12	PZ-B	10.3	NA	pH Units	l	B6B1204	02/11/2016	02/11/2016 16:47	

Analyst: KP

Project: BETA, Southbury

QUALITY CONTROL SECTION

Batch B6B1116 - EPA 300.0

Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B6B1116-BLK1)					Prepared: 2	/11/2016 Analy	zed: 2/11/20	16	
Nitrate as N	ND	0,10							
Nitrite as N	ND	0.10							
LCS (B6B1116-BS1)					Prepared: 2	/11/2016 Analy	zed: 2/11/20	16	
Nitrate as N	4.9	0.10	5.000		98.9	80 - 120			
Nitrite as N	5.1	0.10	5,000		103	80 - 120			

Project: BETA, Southbury

		Batch B6	6B1131 - SN	∕I 4500-P∃	E				
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B6B1131-BLK1)			<u> </u>	·	Prepared: 2	/11/2016 Analy	zed: 2/11/20	16	
Orthophosphate as P	ND	0.10							
LCS (B6B1131-BS1)					Prepared: 2	/11/2016 Analy	zed: 2/11/20	16	
Orthophosphate as P	0.355	0.10	0.326		109	80 - 120			
Duplicate (B6B1131-DUP1)		Source: 6020	202-10		Prepared: 2	/11/2016 Analy	zed: 2/11/20	16	
Drthophosphate as P	ND	0.10		ND				20	

Project: BETA, Southbury

Batch B6B1204 - SM 4500-H B									
Analyte	Result (pH Units)	RL (pH Units)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B6B1204-BLK1)	·				Prepared: 2	/11/2016 Analy	/zed: 2/11/20	16	
pН	6.42								
Duplicate (B6B1204-DUP1)		Source: 6020202-12			Prepared: 2/11/2016 Analyzed: 2/11/2016				
рН	10.4			10.3			0.0967	5	

Project: BETA, Southbury

Batch B6B1226 - EPA 350.1										
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes	
Blank (B6B1226-BLK1) Ammonia as N	ND	0.10	Prepared: 2/12/2016 Analyzed: 2/12/2016							
LCS (B6B1226-BS1) Ammonia as N	5.2	0.10	5.000	Prepared: 2/12/2016 Analyzed: 2/12/2016 5.000 104 80 - 120						

CET #: 6020202

Project: BETA, Southbury

		Batch B	6B1606 - E	CPA 365.4					
Analyte	Result (mg/L)	RL (mg/L)	S p ike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B6B1606-BLK1)					Prepared: 2	/17/2016 Analy	/zed: 2/17/20	16	
Phosphorous, Total	ND	0.10							
LCS (B6B1606-BS1)					Prepared: 2	/17/2016 Analy	/zed: 2/17/20	16	
hosphorous, Total	0.530	0,10	0.509		104	80 - 120			
Duplicate (B6B1606-DUP1)		Source: 6020	202-01		Prepared: 2	/17/2016 Analy	zed: 2/17/20	16	
Phosphorous, Total	2.32	0.10		2.50			7.47	20	
Matrix Spike (B6B1606-MS1)		Source: 6020	202-01		Prepared: 2	2/17/2016 Analy	yzed: 2/17/20	16	
Phosphorous, Total	2.96	0.10	0.509	2.50	90.5	80 - 120			

Complete Environmental Testing, Inc. 80 Lupes Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

CET #: 6020202

군다

Project: BETA, Southbury

		Batch E	B6B1607 - E	PA 351.2					
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B6B1607-BLK1)					Prepared: 2	/17/2016 Analy	zed: 2/17/20	16	
Total Kjeldahl Nitrogen (TKN)	ND	1,0							
LCS (B6B1607-BS1)					Prepared: 2	/17/2016 Analy	zed: 2/17/20	16	
otal Kjeldahl Nitrogen (TKN)	5.43	1.0	5.000		109	80 - 120			
Duplicate (B6B1607-DUP1)		Source: 6020	202-01		Prepared: 2	/17/2016 Analy	zed: 2/17/20	16	
Total Kjeldahl Nitrogen (TKN)	14.8	1.0		14.0			5.56	20	
Matrix Spike (B6B1607-MS1)		Source: 6020	202-01		Prepared: 2	/17/2016 Analy	zed: 2/17/20	16	
Total Kjeldahl Nitrogen (TKN)	19.6	1.0	5.000	14.0	112	80 - 120			

Complete Environmental Testing, Inc. 80 Lupes Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

CET # : 6020202 Project: BETA, Southbury

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

LAP

David Ditta Laboratory Director

Report Comments:

Sample Result Flags:

E- The result is estimated, above the calibration range.

H- The surrogate recovery is above the control limits.

L- The surrogate recovery is below the control limits.

B- The compound was detected in the laboratory blank.

P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.

D- The RPD between the sample and the sample duplicate is high. Sample Homogenity may be a problem.

+- The Surrogate was diluted out.

*C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.

*C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.

- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.

I- The Analyte exceeds %RSD limits for the Initial Calibration. This is a non-directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at the specified detection limit

All analyses were performed in house unless a Reference Laboratory is listed. Samples will be disposed of 30 days after the report date. CET # : 6020202 Project: BETA, Southbury

80 Lupes Drive

Stratford, CT 06615

Tel: (203) 377-9984 Fax: (203) 377-9952 email: cet1@cetlabs.com

Quality Control Definitions and Abbreviations

An Analyte added to each sample or sample extract. An internal standard is used to monitor retention Internal Standard (IS) time, calculate relative response, and quantify analytes of interest. The % recovery for non-tarer organic compounds that are spiked into all samples. Used to determine Surrogate Recovery method performance. An analytical standard analyzed with each set of samples to verify initial calibration of the system. Continuing Calibration Samples that are analyzed together with the same method, sequence and lot of reagents within the same Batch time period. Not detected ND Reporting Limit RL Multiplier added to detection levels (MDL) and/or sample results due to interferences and/or high Dilution concentration of target compounds. Result from the duplicate analysis of a sample. Duplicate Amount of analyte found in a sample. Result Amount of analyte added to a sample Spike Level Amount of analyte found including amount that was spiked. Matrix Spike Result Amount of analyte foun in duplicate spikes including amount that was spike. Matrix Spike Dup % Recovery of spiked amount in sample. Matrix Spike % Recovery % Recovery of spiked duplicate amount in sample. Matrix Spike Dup % Recovery Relative percent difference between Matrix Spike and Matrix Spike Duplicate. RPD Method Blank that has been taken through all steps of the analysis. Blank Laboratory Control Sample percent recovery. The amount of analyte recovered from a fortified sample. LCS % Recovery A range within which specified measurements results must fall to be compliant. Recovery Limits Calibration Verification CC

Flags:

- H- Recovery is above the control limits
- L- Recovery is below the control limits
- B- Compound detected in the Blank
- P- RPD of dual column results exceeds 40%
- #- Sample result too high for accurate spike recovery.

New York Certification 11982 Rhode Island Certification 199

Connecticut Laboratory Certification PH0116 Massachussets Laboratory Certification M-CT903

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name:

me: Complete Environmental Testing, Inc.

Client: Leggette, Brashears & Graham

Project Location: BETA, Southbury

Laboratory Sample ID(s):

6020202-01 thru 6020202-12

List RCP Methods Used:

Project Number: Sample Date(s):

02/09/2016, 02/10/2016

CET #: 6020202

ĩ	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents?	Ves No
IA	Were the method specified preservation and holding time requirements met?	Yes No
1B	VPH and EPH Methods only: Was the VPH and EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?	Yes No
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Yes No
3	Were samples received at an appropriate temperature (< 6 degrees C.)?	Yes □ № N/A
4	Were all QA/QC performance criteria specified in the CT DEP Reasonable Confidence Protocol documents achieved?	Yes No
5a	a) Were reporting limits specified or referenced on the chain-of-custody?	Yes No
5b	b) Were these reporting limits met?	Yes No
6	For each analytical method referenced in this laboratory report package, were results reported for all consituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes No
7	Are project specific matrix spikes and laboratory duplicates included with this data set?	Yes No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does

not meet the requirements for "Reasonable Confidence."

This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Position: Laboratory Director

Date: 02/18/2016

Printed Name: David Ditta

Name of Laboratory: Complete Environmental Testing, Inc.

This certification form is to be used for RCP methods only.

QC Batch/Sequence Report

Batch	Sequence	CET ID	Sample ID	Specific Method	Matrix	Collection Date
[CALC]		6020202-01	MW-2	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-02	MW-3	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-03	MW-4	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-04	MW-6	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-05	MW-8	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-06	MW-9	Calculated Analyte	Water	02/09/2016
[CALC]		6020202-07	MW-10	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-08	MW-11	Calculated Analyte	Water	02/09/2016
[CALC]		6020202-09	MW-12	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-10	MW-13	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-11	PZ-A	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-12	PZ-B	Calculated Analyte	Water	02/10/2016
B6B1116		6020202-01	MW-2	EPA 300.0	Water	02/10/2016
B6B1116		6020202-02	MW-3	EPA 300.0	Water	02/10/2016
B6B1116		6020202-03	MW-4	EPA 300.0	Water	02/10/2016
B6B1116		6020202-04	MW-6	EPA 300.0	Water	02/10/2016
B6B1116		6020202-05	MW-8	EPA 300.0	Water	02/10/2016
B6B1116	1	6020202-06	MW-9	EPA 300.0	Water	02/09/2016
B6B1116		6020202-07	MW-10	EPA 300.0	Water	02/10/2016
B6B1116		6020202-08	MW-11	EPA 300.0	Water	02/09/2016
B6B1116		6020202-09	MW-12	EPA 300.0	Water	02/10/2016
B6B1116		6020202-10	MW-13	EPA 300.0	Water	02/10/2016
B6B1116		6020202-11	PZ-A	EPA 300.0	Water	02/10/2016
B6B1116		6020202-12	PZ-B	EPA 300.0	Water	02/10/2016
B6B1226		6020202-01	MW-2	EPA 350.1	Water	02/10/2016
B6B1226		6020202-02	MW-3	EPA 350.1	Water	02/10/2016
B6B1226		6020202-03	MW-4	EPA 350.1	Water	02/10/2016
B6B1226		6020202-04	MW-6	EPA 350,1	Water	02/10/2016
B6B1226		6020202-05	MW-8	EPA 350.1	Water	02/10/2016
B6B1226		6020202-06	MW-9	EPA 350.1	Water	02/09/2016
B6B1226		6020202-07	MW-10	EPA 350.1	Water	02/10/2016
B6B1226		6020202-08	MW-11	EPA 350.1	Water	02/09/2016
B6B1226		6020202-09	MW-12	EPA 350.1	Water	02/10/2016
B6B1226		6020202-10	MW-13	EPA 350,1	Water	02/10/2016
B6B1226		6020202-11	PZ-A	EPA 350.1	Water	02/10/2016
B6B1226		6020202-12	PZ-B	EPA 350.1	Water	02/10/2016
B6B1607		6020202-01	MW-2	EPA 351.2	Water	02/10/2016
B6B1607		6020202-02	MW-3	EPA 351.2	Water	02/10/2016
B6B1607		6020202-03	MW-4	EPA 351.2	Water	02/10/2016
B6B1607		6020202-04	MW-6	EPA 351.2	Water	02/10/2016
B6B1607		6020202-05	MW-8	EPA 351.2	Water	02/10/2016
B6B1607		6020202-06	MW-9	EPA 351.2	Water	02/09/2016
B6B1607		6020202-07	MW-10	EPA 351.2	Water	02/10/2016
B6B1607		6020202-08	MW-11	EPA 351.2	Water	02/09/2016
B6B1607		6020202-09	MW-12	EPA 351.2	Water	02/10/2016
B6B1607		6020202-10	MW-13	EPA 351.2	Water	02/10/2016
B6B1607		6020202-11	PZ-A	EPA 351.2	Water	02/10/2016
B6B1607		6020202-12	PZ-B	EPA 351.2	Water	02/10/2016

CTDEP RCP Laboratory Analysis QA/QC Certification Form - November 2007 Laboratory Quality Assurance and Quality Control Guidance Reasonable Confidence Protocols

Page 16 of 19

DODIOOU	0020202 01	102.00 2	1111000.1		
B6B1606	6020202-02	MW-3	EPA 365.4	Water	02/10/2016
B6B1606	6020202-03	MW-4	EPA 365.4	Water	02/10/2016
B6B1606	6020202-04	MW-6	EPA 365.4	Water	02/10/2016
B6B1606	6020202-05	MW-8	EPA 365.4	Water	02/10/2016
B6B1606	6020202-06	MW-9	EPA 365.4	Water	02/09/2016
B6B1606	6020202-07	MW-10	EPA 365.4	Water	02/10/2016
B6B1606	6020202-08	MW-11	EPA 365.4	Water	02/09/2016
B6B1606	6020202-09	MW-12	EPA 365.4	Water	02/10/2016
B6B1606	6020202-10	MW-13	EPA 365.4	Water	02/10/2016
B6B1606	6020202-11	PZ-A	EPA 365.4	Water	02/10/2016
B6B1606	6020202-12	PZ-B	EPA 365.4	Water	02/10/2016
B6B1204	6020202-01	MW-2	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-02	MW-3	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-03	MW-4	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-04	MW-6	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-05	MW-8	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-06	MW-9	SM 4500-H B	Water	02/09/2016
B6B1204	6020202-07	MW-10	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-08	MW-11	SM 4500-H B	Water	02/09/2016
B6B1204	6020202-09	MW-12	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-10	MW-13	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-11	PZ-A	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-12	PZ-B	SM 4500-H B	Water	02/10/2016
B6B1131	6020202-01	MW-2	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-02	MW-3	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-03	MW-4	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-04	MW-6	SM 4500-P É	Water	02/10/2016
B6B1131	6020202-05	MW-8	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-06	MW-9	SM 4500-P E	Water	02/09/2016
B6B1131	6020202-07	MW-10	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-08	MW-11	SM 4500-P E	Water	02/09/2016
B6B1131	6020202-09	MW-12	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-10	MW-13	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-11	PZ-A	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-12	PZ-B	SM 4500-P E	Water	02/10/2016

EPA 365.4

Water

02/10/2016

MW-2

6020202-01

B6B1606

* Additional charge may apply.		Tund Sandor	Report To:		Research Dr.		Company Name		Client / Reporting Information	RELINQUISHED BY:	HELINGSANSHED BY:	BELINQUISHED BY:	Soil VOCs Only (M=MeOH	CONTAINER TYPE (P-Plast	PRESERVATIVE (CI-HCI, N-	MW-13	MW-12	MW-11	212-10	9-WM	MW- 8	MW-6	MW/H	5 MM	Mw-2	Sample ID	Bottle Request e-mail:	Stratford, CT 06615				2070709	
** TAT begins when the samples are received at the Lab and all issues are resolved. TAT for samples received after 3 p.m. will start on the next business day.	Fax #	r tsandor@lbut.com	E-mail						vimation		IOC RECEIVED BY:	<u> </u>	B=Bisulfate W=Water	CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, O-Other)	PRESERVATIVE (CI-HCI, N-HNO3, S-H2SO4, Na-NaOH, C=Cool, O-Other)		211/0115@1200	219/16/01556	2/10/162/12	241160 1545		1133	650		2/10/16 1017 W	Sample Collection when the	ay *	A=Au S=Soil W⊨Water		COMPLETE ENVIRONMENTAL TESTING, INC.			
ab and all issues are resolved. TAT fo	Receipt User Vice State	M Laboratory Certification Needed (check one)	ASR Reporting Limits (check one)	Data Report APDF	QÁ/QC [] Std	Location: Southbury,	Project: KC IT	٦	Project Contact		-	NOTES:	MM -								X	X		×	×	2-3 Days Std (6-7 Da 8260 CT 8260 Arc 8260 Ha 624 CT ETP 8270 CT 8270 PN PCBs	ays) F List omatio alogen H F List	ē cs	round Organics		CHAIN OF C		
r samples received after 3 p.m. will :		ed (check one) 🕱 CT 🛛 NY	one) 🕅 GA 🗆 GB 🗆 SWP	EDD - Specify Format	I Site Specific (MS/MSD) *	Collector(s):	Project #:	3	Sunder Project Information																	Pesticide 13 Prior 8 RCRA TOTAL TCLP SPLP Field Fil Lab To F	ity Po		Metals (check all that apply)		CUSTODY Client		Volatik
start on the next business day.	SHEET	Y DRI DMA	P [] Other	Other		PL/JP										XXXXX			XXXXXX		XXXXXX	XXXXXX	XXXXXX		XXXXXXX	Nitrat Nitrat TKID Litrug Phose Tutal p	1 2 , yen hos	, phi te, phoc	Additional Analysis			Date and Time in Freezer	Volatile Soils Only:
HEV. 06/14														6	⊥ て て	1	2	2	2	200	2	N	2	2	0	, TOTAL	-	CONT		Part Part			_

3	Phone # 2339298555	Tu nos Sander	Report To:		4 Research Dr. Suite 204	Address	Company Name	Client / Reporting Information	RELINQUISHED BY: DATE/TIME			(M=MeOH E	CONTAINER TYPE (P-Plastic, G-Glass, V-Vial, O-Other)	PRESERVATIVE (CI-HCI, N-HNO3, S-H2S				2-30	A-24	Sample ID Sar	e-mail: cert e centars.com Bottle Request e-mail: bottleorders@cetlabs.com	80 Lupes Drive Tel: (Stratford, CT 06615 Fax: (6 0 2 0 2 0 2
ins when the samples are received at the Lab ;	Fax #	tscinder@log(f.com	E-mail		Ę			-	ME HECEIVED BX3	20		W=Water	V-Vial, O-Other)	(CI-HCI, N-HINOs, S-H2SO4, Na-NaOH, C=Cool, O-Other)				1020 1	Julue 144 W	Sample Collection water Depths Date/Time (speeds) Same Da (Units) Date/Time (speeds) Same Da 2-3 Day	C=Caseette ay *	A=Air S=Soil W=Water	Matrix Turnaround	COMPLETE ENVIRONMENTAL TESTING, INC.		
TAT begins when the samples are received at the Lab and all issues are resolved. TAT for samples received after 3 p.m. will start on the next business day.	Alexandread a strategy cooling at a strategy of the strategy o	Laboratory Certification Needed (check one)	g Limits (check	port KPDF 🗆 EDD -	□ Std □ Site Specific (MS/	Location: Southbury, CT	Project BETA	de Sando	Depiert int		NOTES:									Sid (5-7 D 8260 C 8260 Ar 8260 He 624 CT ETF 8270 C 8270 PI PCBs Pesticid 13 Priol 8 RCR/ TOTAL TCLP SPLP Field Fi	F List omatic aloger PH F List NAs les ity Po		nd Organics Metals (check all that apply)	CHAIN OF CUSTODY		
p.m. will start on the next business day. REV. 06/14	SHEET 2 OF 2		SWP Other	Cother_	MSD)* X RCP Pkg* □ DOAW*	collector(s): PL/ TP	Project #:		Droioot Information											Lab To AMMY Nitro Nitro TKK Nitro PH/P Dotal	Filter Drie He,), Syl Pbo # OF	a, b boste, sphore	PPly) Additional Analysis	Client: CEI	Date and Time in Freezer	Volatile Soils Only:

nerazer.,

LOW FLOW LOGS

LEGGETTE, BRASHEARS & GRAHAM, INC.

		LEGO	GETTE, BR	ASHEA	RS & GR	AHAM, INC.	PAGE	OF	1
						SA	MPLE DATE:	91 23 2	<u>4 /15 </u>
		LOW	FLOW SA	MPLIN	GLOG	TOT	AL # WELLS:	10	
Client Nam	ne:		BETA			Sample Pump:	Geopump		
Project Lo	cation	: <u>990 Ma</u>	ain St Southbu	ry. CT	<u>_</u>	Tubing Type:	LDPE - 30	Tygon - I	
Sampler(s):		Pamela Lind			Monitoring Equi	pment: _	<u> </u>	
Well I.D.	M	W-1	· · ·		· · ·	Screen Setting	(ft btoc):	to	·····
Well Diam	eter (i	nches): _	2			Tubing Intake (f	t btoc): _	16	
			8.3			Comments:	Pump on a	1858	
Depth to V	Vater ((ft btoc):	14.40		<u> </u>		·-		
Well Cond	lition:	9002 ·	odor from c	water					
Time		Depth to	Evacuation		Wa	ater Quality Moni	toring Para	meters	
		Water	Rate ,	pН	Conductivity	Turbidity		Temperature	ORP
(hours	s)	(ft btoc)	(ml/min)		(us/cm)	(NTU)	oxygen (mg/l)	(°C)	(mv)
9 11		14.93	~100	9.69	1304	85.3	7.11	18.38	-109.4
914				9.34	1273	67.4	3.31	18.30	-113.0
917	~ [9.03	232	60.4	2.44	18.43	~1)6.S
920				8.73	1229	53.2	2.48	18.49	-115.8
923				\$.29	1207	48.7	2.25	18.62	-114.9
924				7.79	1198	43.6	2.08	18.61	-114.2
929				7.17	1196	41.9	2.03	18.58	-113.3
932	<u>ک</u>	\checkmark		7.73	1201	Mar. 40.1	1.95	18.57	-112.8
									,
			_						
		Denth to	Total Removed	Stabiliz pH	Conductivity	ers (stabilization ach Turbidity	Dissolved	Consecutive mean	surements)
Time		Depth to Water	> Change in	P.1			oxygen		
FROM	то	(ft btoc)	Storage (Y/N)?		(%)	(%)	(%)	(%)	(mv)
920 9	129	0,53	ý y	0.02	0.17	3.90	2.40	0.16	08
· · · · · · · · · · · · · · · · · · ·	132	0,53	<u> </u>	0.04	0.42	4.30	3.94	0.05	2.0
	932	0.53	Ŷ	0,04	0.25	5.02	6.25	0.21	1.4
I				· · ·				<u> </u>	1
Recomme Stabilizat		<u>≤</u> 0.3 ft. totai	NA	+/- 0.1 unit	+/- 3%	<5 NTU or +/- 10%	+/- 10% if >0.5 mg/L	+/- 3%	+/- 10 mv
Stabilizat (Yes/N		. 🗸	1						
Sample Ti		935				Reviewed by:			
ft btoc		feet below top	of casing	UŢN	Nephelometric Tu	rbidily Units	°C	degrees Celsius	
mt/mln		milliliters per r		mg/l	milligrams per liter		mv	millivolts	
µ\$/cm		microseimens	per centimeter	ms/cm	milliselmens per c	enumeter			

	LEG		ACUE			PACE		<u></u>
	LEG	SELLE, DA	(ASHE/	1K5 & GR/	AHAM, INC.			
							<u> </u>	-
	LOW	-FLOW SA	MPLIN	IG LOG	TOT	TAL # WELLS:	10	I
								
Client Name:		BETA			Sample Pump:	Geopump		
Project Locatio	n: <u>990 M</u>	ain St Southbu	iry, CT		Tubing Type:	<u>LDPE -</u>	Tygon -]
Sampler(s):		Pamela Lind			Monitoring Equ	ipment:		<u> </u>
Well (.D	MW-2	•			Screen Setting	(ft btoc):	to	
Well Diameter	(inches): _	2			Tubing Intake (ft btoc):	16	
Total Depth (ft		-			Comments:	Pump on a	t 950	
Depth to Water					_		-	·
Well Condition:			<u> </u>					
Time	Depth to	Evacuation		\\/e	ater Quality Mon	itoring Pere	motors	
	Water	Rate	pH	Conductivity			Temperature	ORP
			P''		, i	oxygen	romporatate	
(hours)	(ft btoc)	(ml/min)		(us/cm)	(NTU)	(mg/l)	(°C)	(mv)
/000	11.50	~100	11.34	1 10	31.0	3.06	20.45	-121.2
1003			нал	1170	21.2	2.84	20,51	-121.2
1006		\checkmark	10.95	1156	18.5	2.44	20.46	-121.0
1009	10.00	1 funct	10nin	a Y_{SL}	> Durae	it the	n scmpl	6
	1.405		•		(
			_					
		· · · · ·						· · · · ·
		·· =· ·· ··						
	+						<u> </u>	
	+			···	· · · ·			
<u> </u>				- <u>-</u> -				
	<u> </u>		Stahiliz	ation of Paramete	ers (stabilization ac	hieved for three	consecutive meas	surements)
Time	Depth to	Total Removed	pH	Conductivity	Turbidity	Dissolved	Temperature	ORP
FROM TO	Water	> Change in Storage (Y/N)?		·		oxygen		
	(ft btoc)			(%)	(%)	(%)	(%)	(mv)
	<u> </u>						L	
				· _	<u> </u>	<u> </u>	<u> </u>	
Recommended Stabilization	≤ 0.3 ft. total	NA	+/- 0.1 unit	+/- 3%	<5 NTU or +/- 10%	+/- 10% lf >0.5 mg/L	+/- 3%	+/- 10 mv
Stabilization: (Ves(No)								· · ·
(Yes/No) Sample Time: -	1035		· · · · · · · · · · · · · · · · · · ·	<u>4</u>	Reviewed by:	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
ft btoc	feet below top	of casing	UŢИ	Nephelometric Tur	bidity Units	°C	degrees Celsius	-
· ml/min	milliliters per r		mg/l			mv	millivolts	
us/cm	microselmens	per centimeter	ms/cm	milliseimens per co	entimeter			<u> </u>

. •

	λ,	LEGO	ETTE, BR	ASHEA	RS & GRA	HAM, INC.	PAGE	-1-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>t </u>
		LOW	FLOW SA	MPLIN	G LOG			23) 24 10	/15
	F								
Client Nam	ie:		BETA			Sample Pump:	Geopump		
Project Loo	ation:	<u>990 Ma</u>	<u>iin St Southbu</u>	iry, CT		Fubing Type:	LDPE - 27	Tygon - 1	
Sampler(s)	:		Pamela Lind		1	Monitoring Equ	ipment:	<u> </u>	
Nell I.D.	1	1w-3	>			Screen Setting	(ft btoc):	to	
Nell Diam	eter (ir	nches): _	2			Fubing Intake (ft btoc): <u> </u>	7	
rotal Dept			<u>9.45</u>		(Comments: _	Pump on at	1130	
Depth to W	/ater (ft btoc): _	12.85						·
Nell Cond	_		7	· · · · ·					
Time	ī	Depth to	Evacuation		Wat	er Quality Mor	itoring Parar	neters	
		Water	Rate	рН	Conductivity	Turbidity	1 1	Temperature	ORP
(hours		(ft btoc)	(ml/min)		us/cm	· (NTU)	oxygen (mg/l)	(°C)	(mv)
Maden	<u> </u>			7.45	564	5.3	3.34	16.81	201.4
TARK DAT	· · ·					~••\]			
				·			'i		
								_	
			<u> </u>						<u></u>
							<u> </u>		
		D	Total Removed		tion of Paramete	rs (stabilization ac Turbidity	hieved for three Dissolved	consecutive meas	orements)
Tìme		Depth to Water	> Change in	рН	Conductivity	raiblaity	oxygen	Temperature	010
FROM	то	(ft btoc)	Storage (Y/N)?		(%)	(%)	(%)	(%)	(mv)
						· · · ·			
						· · · · · · · · · · · · · · · · · · ·			
								· · · ·	
				<u> </u>			<u> </u>	<u> </u>	
Recomme Stabiliza	ion	\leq 0.3 ft. total	NA	+/- 0,1 unit	+/- 3%	<5 NTU or +/- 10%	+/- 10% if >0.5 mg/L	+/- 3%	+/- 10 mv
Stabilizat (Yes/N		·							
Sample Ti		1200	·			Reviewed by: -			
ft btoc feet below to			of casing	NŢU	Nephelometric Tur	bidity Units	°C	degrees Celsius	
mi/min		mililliters per r	ninute	. mg/l	milligrams per liter milliseimens per ce		mv	millivolts	
μs/cm		microseimens	per centimeter	ms/cm	minseintens per cu				

the second s

			ETTE, BR				MPLE DATE:	10F 10/1/1 2	5
Client Na		. <u></u>	BETA Group			Sample Pump:	Geopumn		
N .			in St N Southb			Tubing Type:			
Sampler			Pamela Lind	<u>ury, or</u>		Monitoring Equi			
Well I.D.	<u> </u>					Screen Setting			
	_		2			Tubing Intake (f	• •		
ß			19.45			Comments:	, –		
ri		(ft btoc):							
Well Con				<i>````````````````````````````````</i>	<u> </u>	<u></u>			
Tim		Depth to	Evacuation		Wa	ter Quality Moni	toring Para	meters	
		Water	Rate	pH	Conductivity			Temperature	ÖRP
(hou	rs)	(ft btoc)	(ml/min)		us/cm	(NTU)	oxygen (mg/l)	(°C)	(mv)
9:0	6	13.22	~100	8.30	569	8.8	1.36	14.91	-75.7
<u>,</u> 9:0	9 ·	13.22	~100	7.56	557	8.8	0.58	14.87	_42.6
9:1	2	13.22	~100	7.26	555	8.5	0.48	14.91	115.8
9:1	5	13.22	~100	7.18	552	8.6	0.42	14.85	116.9
9:1	8	13.22	~100	7.20	549	8.7	0.37	14.83	117.6
					<u> </u>			<u> </u>	
		Donth to	Total Removed			ers (stabilization ach Turbidity	ieved for three Dissolved		
Tim FROM	TO	Depth to Water (ft btoc)	> Change in Storage (Y/N)?	рH	Conductivity (%)	(%)	oxygen (%)	Temperature (%)	ORP (mv)
9:06	9:09	0.72	Y	0.08	0.5	1.2	<0.5	0.4	1.1
9:09	9:12	0.72	Y	0.02	0.5	1.1	<0.5	0.1	0.7
9:12	9:15	0.72	т	0.06	1.1	2.3	< 0.5	0.5	1.8
			· · · · · ·						
Recomm Stabiliz		≤ 0.3 fL total	NA	+/- 0.1 īt	+/- 3%	<5 NTU or +/- 10%	+/- 10% jf >0.5 mg/L	+/- 3%	+/- 10 mv
Stabiliza (Yes/		Y	Y	Y	Y	Y	Y	Y	Y
Sample T ft btoc ml/min µs/cm	Fime:	9:20 feet below top mililiters per n microseimens			Nephelometric Tur milligrams per liter milliseimens per ce	-	°C mv	degrees Celsius millivolts	

nn://// __

						PACE		1
		SEITE, DR	Ashea	KS & GR	AHAM, INC.			<u>1</u>
		-FLOW SA	MPLIN	GLOG		TAL # WELLS:	\bigcirc	
Client Name:		BETA			Sample Pump:	Geopump		
Project Locati	ion: <u>990 M</u>	ain St Southbu	ry. CT		Tubing Type:	LDPE-30	Tygon -	
Sampler(s):		Pamela Lind			Monitoring Equ	ipment:		
Well I.D.	MW-4				Screen Setting	(ft btoc):	to	
Well Diamete	r (inches):	2	. –		Tubing Intake ((ft btoc):	18	
Total Depth (i	•	0,70			Comments:	•	t 1215	-
Depth to Wat		10.08						
Well Conditio							<u> </u>	
Time	Depth to	Evacuation		Wa	ater Quality Mor	nitoring Para	meters	<u></u>
	Water	Rate	рН	Conductivity	Turbidity	Dissolved	Temperature	ORP
<i>"</i> . ``	(AL)	lan Huster			ŗ	oxygen		
(hours)	(ft btoc)	(ml/min)			(NTU)	(mg/l)	(°C)	(mv)
			7.11	981	9.0	2.70	19.16	189.7
			·		·	<u> </u>		
			·		· · ·	<u> </u>		<u>_</u>
						· · · · ·		
						<u> </u>		·
	-							· .
								·
···· ,			-		<u>_</u>	· ·		
		·						
				<u> </u>		<u> </u>	<u> </u>	
Time	Depth to	Total Removed	<u>Stabiliz</u>	Conductivity	ers (stabilization ad Turbidity	Dissolved	Temperature	ORP
	Water	> Change in	μı			oxygen	(emperature	
FROM TO) (ft btoc)	Storage (Y/N)?		(%)	(%)	(%)	(%)	(mv)
		`						
Recommended		NA	+/- 0.1	+/- 3%	<5 NTU	+/- 10%	+/- 3%	+/- 10 mv
Stabilization Stabilization:			unit	<u> </u>	or +/- 10%	if >0.5 mg/L	<u> </u>	<u>॑</u>
Stabilization: (Yes/No)				ļ			<u> </u>	
Sample Time:		5			Reviewed by:			
ft btoc	feet below top	of casing	טדָא	Nephelometric Tur	bidity Units	°C	degrees Celsius	· · · ·
ml/min	milliliters per n		-	milligrams per liter		mv	millivolts	
μs/cm	microseimens	per centimeter	ms/cm	milliselmens per c			<u> </u>	I

.

and a second s

							MPLE DATE:	10/1/	15
			'FLOW SA	MPLIN	G LOG	TOT 	TAL # WELLS:	2	
Client Na	ime:		BETA Group			Sample Pump:	Geopump		
Project L	ocation	n: <u>990 Ma</u>	in St N Southb	ury. CT		Tubing Type:	<u>LDPE - 30</u>	Tygon - 1	
Sampler((s):		Pamela Lind			Monitoring Equi	pment:	YSI	
Well I.D.		MW-4				Screen Setting			
Well Diar	neter (i	inches): _	2			Tubing Intake (f	t btoc): _	18	
Total Dep	oth (ft b	otoc):	20.7			Comments:	Pump on a	t 9:30	
Depth to	Water	(ft btoc):	8.78						
Well Con	dition:	good							
Tim	e	Depth to	Evacuation		Wa	ter Quality Moni	itoring Para	meters	<u> </u>
		Water	Rate	ρН	Conductivity	Turbidity		Temperature	ORP
(hour	<u> </u>	(ft btoc)	(ml/min)		us/cm	(NTU)	oxygen (mg/l)	(°C)	(mv)
9:3	7	8.80	~100	7.28	826	25.0	1.12	16.30	108.4
9:4	0	8.80	~100	7.23	827	10.2	1.02	16.40	110.8
9:4:	3	8.80	~100	7.20	834	9.5	1.00	16.49	113.1
9:4	6	8.80	~100	7.18	838	9.6	0,92	16.62	115.1
9:49	9	8.80	~100	7.16	838	9.7	0.95	16.65	116.5
	-							<u> </u>	
						·			
		·							
				. <u> </u>		· · · · · · · · · · · · · · · · · · ·			L
								<u> </u>	·
Tim		Depth to	Total Removed	Stabiliz pH		ers (stabilization ach Turbidity	neved for three Dissolved	<u> </u>	
		Water	> Change in	hu	Conductivity	i ur Diult y	oxygen	Temperature	ÓRP
FROM	то	(ft btoc)	Storage (Y/N)?		(%)	(%)	(%)	(%)	(mv)
9:06	9:09	0.02	Y	0.02	0.5	1.0	8.0	0.8	2.0
9:09	9:12	0.02	Y	0.02	0.0	1.0	3.2	0.2	1.4
9:12	9:15	0.02	Y	0.04	0.5	2.1	5.0	1.0	3.4
		. <u></u>							<u> </u>
Recomme Stabiliza	ation	≤ 0.3 ft. total	NA	+/- 0.1 unit	+/- 3%	<5 NTU or +/- 10%	+/- 10% if >0.5 mg/L	+/- 3%	+/- 10 mv
Stabiliza (Yes/N		Y	Y	Y	Y	Y	Y	Y	Y
Sample T	īme: —	9:20				Reviewed by:			
ft btoc ml/min		feet below top milliliters per n		NTU ៣៨/	Nephelometric Tur milligrams per liter	-	°C	degrees Celsius millivolts	
mi/min µs/cm		-	per centimeter	ms/cm	milliseimens per itter milliseimens per ce		mν		1

and an and the second second second

and a subserver of

concerned as

.....

	LEGO	GETTE, BRA	ASHEA	RS & GRA	HAM, INC.	PAGE			
			-				9/ 23 24)/1 <u>5</u>	
	LOW	FLOW SA	MPLIN	G LOG			10		
Client Name:		BETA			Sample Pump:	Geopump			
Project Location	: _990 Ma	ain St Southbur	<u>у, СТ</u>		Tubing Type:	LDPE - 30	Tygon - 1		
Sampler(s):		Pamela Lind		1	Monitoring Equ	lipment:			
Vell I.D.	MW - 5	b			Screen Setting	(ft btoc):	to		
Nell Diameter (i	inches): _	2		18					
Fotal Depth (ft b		8.00	'. 		Comments: _	Pump on al	Grain say	nple_	
Depth to Water	(ft btoc):	17.59						<u> </u>	
Nell Condition:									
Time	Depth to	Evacuation		Wat	ter Quality Mor	nitoring Parar	neters		
	Water	Rate	pH	Conductivity	Turbidity	Dissolved oxygen	Temperature	ORP	
(hours)	(ft btoc)	(ml/min)		(us/cm)	(NTU)	(mg/l)	(°C)	(mv) _	
					<u> </u>				
								-	
1									
· · ·						· ·			
	· · · · · · · · · · · · · · · · · · ·								
	<u>-</u>								
<u> </u>									
	+								
	<u>. </u>		Stabiliz	ation of Paramete	rs (stabilization a	chieved for three	consecutive meas		
Time	Depth to	Total Removed > Change in	рH	Conductivity	Turbidity	Dissolved	Temperature	ORP	
FROM TO	(ft btoc)	Storage (Y/N)?		(%)	(%)	oxygen (%)	(%)	(mv)	
			- 1 ²						
	<u> </u>					<u></u>			
·	<u> </u>								
·		<u> </u>	/	<u> </u>					
Recommended	L	<u> </u>	+/- 0.1		<5 NTU	+/- 10%		+/ 10	
Stabilization	≤ 0.3 ft. total	NA	unit	+/- 3%	or +/- 10%	if >0.5 mg/L	₩-3%	+/- 10 m	
Stabilization:									
(Yes/No)	1055	L,	1	<u></u>	Reviewed by: -				
Sample Time: _		of casing	NTU	Nephelometric Tur	-	°C	degrees Celsius		
ft btoc mi/min	feet below top milliliters per r			milligrams per liter		mν	millivolts		
us/cm		s per <u>centimeter</u>	ms/cm	milliseimens per ce	entimeter		· · · · · · · · · · · · · · · · · · ·		

.

we approached to the second fitter and

سيتعموه جود بالا

and the second second

er a sinje

and a second second second a second wave and a second second second second second second second second second s

		LEGO	SETTE, BR	ASHEA	RS & GR	AHAM, INC.	PAGE		1	
	Pà					SA	MPLE DATE:	9/ 23 2	4)15_	
		LOW	FLOW SA	MPLIN	g log	TOT	AL#WELLS:	10		
Client Na	ame:		BETA			Sample Pump:	Geopump	<u> </u>		
Project L	ocation	n: <u>990 Ma</u>	ain <u>St Southbu</u>	iry. CT	<u></u> <u>.</u> .	Tubing Type:	LDPE-47	Tygon -		
Sampler			Pamela Lind			Monitoring Equi	ipment: _	<u> </u>		
		44-6				Screen Setting	(ft btoc):	to		
Well Dia	meter ((inches):	2			Tubing Intake (ft btoc): <u>37</u>				
			40.45			Comments:				
			28.52	•						
Well Cor										
Tim	<u></u>	Depth to	Evacuation		Wa	ater Quality Mon	itoring Para	meters		
		Water	Rate	рН	Conductivity	Turbidity	Dissolved oxygen	Temperature	ORP	
(hou	ırs)	(ft btoc)	(ml/min)	<u> </u>	(us/cm)	<u>(NTU)</u>	(mg/l)	(°C)	<u>(mv)</u>	
93	7	29.40	~100	8.26		45.5	9.15	12.40	136.7	
<u>94</u>	0	29.61		8.33		37.9	8.14	12.21	140.6	
94	<u>13</u>	29.70		<u> </u>	132	20.2	8.01	12.91	143.7	
94	6	29.70		8.36	132	21.3	792	12.89	<u>145.4</u>	
91	19	29.70		<u>8.37</u>	133	22.04	7.76	13.02	148.7	
					<u></u>					
							<u></u>	· · · · ·		
	_					<u> </u>				
				<u>_</u>			<u> </u>			
		ļ			. _					
					·	l	<u> </u>	<u> </u>	<u> </u>	
		Douth to	Total Removed	L	ation of Paramet	ers (stabilization act Turbidity	Dissolved	Temperature	oRP	
		Depth to Water	> Change in	рĤ			oxygen	remperature		
FROM	ŤŌ	(ft btoc)	Storage (Y/N)?		<u>(%)</u>	(%)	(%)	(%)	_(mv)	
943	946	0	У	0.02	<u>0</u>	5.45	1.12	0.15	1.7	
946	944	0	У	0.01	0.75	3.18	2.02	0.99	3.3	
943	949	0	<u> </u>	0.03	0.75	8.18	3.12	0.84	4.0*	
Recomn Stabili		≤ 0.3 ft. total	NA	+/- 0.1 unit	+/- 3%	<5 NTU or +/- 10%	+/- 10% if >0.5 mg/L	+/- 3%	+/- 10 mv	
Stabiliz			<u>└───</u> ─────────────────────────────────	<u></u>	<u> </u>			<u></u>	† – – – ′	
(Yes	/ <u>No)</u>		<u></u>	<u>L </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	
Sample	Time: _	95) <u> </u>	<u> </u>		Reviewed by:				
fi bloc		feet below top		NTU Nephelometric Turbidity Units °C degrees Celsius						
ml/min 		mililiters per r microseimens	ninute per centimeter	mg/l ms/cm	milligrams per lite milliseimens per d		mv	annouts		
<u></u>					- <u></u> .					

and a second second

, etter salaan een la saan een verstatien verstatien terveten statien verstatien verstatien verstatien verstati

							PACE	1 OF	<u> </u>
			JEILE, DR	ASHEA	185 & GR	AHAM, INC.			
歐相	c di				~ . ~ ~			9/ 23 (2	
			-FLOW SA	MPLIN	GLOG	10	IAL # VVELLS:	10	
Client Na	ame:		BETA			Sample Pump;	Geopump	·	<u> </u>
Project L	ocatio	n: 990 M	ain St Southbu	IIV. ĆT		Tubing Type:	_		
Sampler			Pamela Lind			Monitoring Equ			
		MW				Screen Setting		to	
	_	(inches); _			······	Tubing Intake (•		i
			12.65	•		Comments: _			
		(ft btoc):	11.63						where
	_								
Tim									<u> </u>
I II M		Depth to Water	Evacuation Rate			ater Quality Mon			
				pН	Conductivity	Turbidity	Dissolved oxygen	Temperature	ORP
(hou	rs)	(ft btoc)	(ml/min)		(us/cm)	· (NTU)	(mg/l)	(°C)	(mv)
				:			<u>;</u> _	<u></u>	
		.				<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		├──── ┃
	<u> </u>								· · · · · ·
		·					<u> </u>	·	
		·							
			·						
<u> </u>				,	·				
		<u> </u>					<u> </u> -		
	<u> </u>			<u>-</u>	<u> </u>			·	
				Ct-1-11:	tion of Demonst		historia for the sec		· · · · · · · · · · · · · · · · · · ·
 Tim		Depth to	Total Removed	pH	Conductivity	ers (stabilization act Turbidity	Dissolved		ORP
		Water	> Change in	Pr) 4		- an existing	oxygen		
FROM	то	(ft btoc)	Storage (Y/N)?	<u> </u>	(%)	(%)	(%)	(%)	(mv)
			· ·				18		
Recomm	ended	<u><</u> 0.3 ft.	NA	+/- 0.1	+/- 3%	<5 NTU	+/- 10%	+/- 3%	+/- 10 mv
Stabiliz		total		unit		or +/- 10%	lf >0.5 mg/L		
Stabiliza (Yes/l		-							
Sample 1		1028	5			Reviewed by:			
ft btac feet below top of casing				NTU Nephelometric Turbidity Units			°C degrees Celsius		
mi/min milliliters per minule				mg/l milligrams per liter mv millivolts					
us/cm microseimens per centimeter					milliseimens per c	entimeter			

.

		LEGO	SETTE, BR	ASHEA	RS & GR	aham, Inc.	PAGE	OF	1	
		LOW	-FLOW SA	MPLIN	G LOG			<u>9/ 23 (2</u> 10		
						_	·	_		
Client Na	ime:		BETA			Sample Pump:	Geopump	······································		
Project L	ocation	: <u>990 Ma</u>	ain St Southbu	ry, CT		Tubing Type:	LDPE - 45	Tygon - 1		
Sampler	(s):		Pamela Lind			Monitoring Equ	ipment:	<u> </u>		
		MW-8				Screen Setting	(ft btoc):	to		
Well Dia	meter (i	inches):	2			Tubing Intake (ft btoc): 35				
Total De	pth (ft b	otoc):	41.8		Comments: <u>Pump on at 827</u>					
Depth to	Water	(ft btoc):	29.45							
Well Cor		·								
Tim	e		Evacuation		Wa	ater Quality Mon	itoring Parar	neters		
		Water	Rate	pН	Conductivity	Turbidity		Temperature	ORP	
(hou	rs)	(ft btoc)	(ml/min)		us/cm	· (NTU)	oxygen (mg/l)	(°C)	(mv)	
84	5	30.60	~100	8.14	112	61.9	7.04	11.93	83.9	
84	843 30.79				105	<u>SS.7</u>	669	11.69	103.6	
_ 84	6	30.86		8.18	_/03_	53.3	6.00	<u> 11.49 </u>	113.4	
84	ן אַר	30 93		8.19	103	51.7	5.82	11.49	119.7	
85	2	31.00		8.22	103	49.7	5.74	11.48	122.9	
					Ļ					
							· ·			
		· ·			<u> </u>		 			
	_									
			_		·	ļ				
							ļ . — -			
		<u> </u>			<u> </u>	<u> </u>	L			
		Depth to	Total Removed	DH Stabiliz	ation of Paramet	ers (stabilization ac Turbidity	hieved for three Dissolved	consecutive meas Temperature	orements)	
Tin		Water	> Change in	Pri			oxygen	. on portation		
FROM	TO	(ft btoc)	Storage (Y/N)?		(%)	(%)	(%)	(%)	<u>(mv)</u>	
846	<u>१५</u> 9	0.07	Y	0.01	0	3.00	3.00	0	6.3	
	852	0.07	. Y	0.03	0	3.87	1.37	0.09	3.2	
846	852	0.07	<u> </u>	0.04	0	6.75	4.33	0.09	9.5	
Recomn Stabiliz		<u>≤</u> 0.3 ft. total	NA	+/- 0.1 unit	+/- 3%	<5 NTU or +/- 10%	+/- 10% if >0.5 mg/L	+/- 3%	+/- 10 m	
Stabiliz	Stabilization: (Yes/No)				\checkmark					
Sample		855		Reviewed by: -						
ft bloc ml/min		feet below top milliliters per r	ninute	mg/l	Nephelometric Tu milligrams per lite	r	°C mv	degrees Coislus miliivoits		
<u>μs/cm</u>	<u></u>	microseimens	per centimeter	ms/cm	milliselmens per d					

and a second I

<u>na strategie aver</u>

<u> </u>	>	LEGO	SETTE, BR	ASHEA	RS & GR	AHAM, INC.	PAGE		1	
B		LOW	-FLOW SA		GLOG		MPLE DATE: AL # WELLS:	2110 h6 15		
Client Na	me:		Beta Group			Sample Pump:	Geopump	·		
Project L	ocation	: <u>990 Ma</u>	in St North. Se	outhbury,	<u>ct</u>	Tubing Type:	LDPE -40	Tygon -		
Sampler(s):	(PL JP			Monitoring Equipment: Horibe				
Well I.D.	_M					Screen Setting	(ft btoc):	to		
Well Diar	neter (i	inches): _	2			Tubing Intake (1	ft btoc): _	16		
		otoc): _/				Comments:	Pump on a	t 952		
			8.12							
Well Con				· · · ·						
Tim		Depth to	Evacuation	Water Quality Monitoring Parameters						
		Water	Rate	pН	Conductivity	Turbidity		Temperature	ORP	
(hou	rs)	(ft btoc)	(ml/min)		w/s/cm	(NTU)	oxygen (mg/l)	(°C)	(mv)	
95(J	8.50	~160	6.62	0.833	39.2	2.46	8.17	86	
95	ч ч			6.47	0.844	30.1	1.74	7.89	18	
/00	2			6.41	0.861	12.7	1.49	7.60	-1	
100				6.46	0.878	9.3	1.38	7.34	- 11	
100	ζ			6.45	0.890	, 8.0_	1.28	7.10	-19	
1011				6.46	0.896	7.7	1.24	6.98	-22	
1014			\rightarrow	6.49	0.900	7,3	1.22	6.91	-26	
							<u> </u>		l	
						ers (stabilization act			-	
Tim	e	Depth to Water	Total Removed > Change in	pН	Conductivity	Turbidity	Dissolved oxygen	Temperature	ORP	
FROM	ΤÖ	(ft btoc)	Storage (Y/N)?		(%)	(%)	(%)	(%)	(mv)	
1008	1011	$\overline{0}$	Ŷ	10.0	0.67	3.75	3.13	5.92	3	
101	1014	0	Y	0.03	0.44	5.19	1.61	1.00	4	
100%	1014	Ö	Y	0.04	1-11	8.75	4.69	2.68	7	
	<u> </u>	· ·								
Recomm Stabiliz		≤ 0.3 ft. total	NA	+/- 0.1 unit	+/- 3%	<5 NTU or +/- 10%	+/- 10% if >0.5 mg/L	+/- 3%	+/- 10 mv	
Stabiliz (Yes/										
Sample		1017				Reviewed by:				
ft btoc ml/min		feet below top milliliters per n	-	NTU Nephelometric Turbidity Units °C degrees Celsius mg/i milligrams per liter mv millivolts						
μs/cm		microselmens	per centimeter	ms/cm milliselmens per centimeter						

					DC & CDA	HAM, INC.	PAGE	1 OF 1	
						SA	MPLE DATE: _	2/10/16	
Client Na	me:		Beta Group			Sample Pump:	<u>Geopump</u>		
			in St North. So	outhbury, (<u>CT</u>	Tubing Type:	<u>LDPE - 30'</u>	Tygon <u>- 1</u>	
Sampler((PL) JP			Monitoring Equi	pment:	Horiba	
Well I.D.						Screen Setting ((ft btoc):	to	
11			2			Tubing Intake (f			
		toc): _/				Comments:			
			10.75						
Well Con									<u> </u>
Tim		Depth to	Evacuation			ter Quality Moni	itoring Parar	meters	<u> </u>
	C	Water	Rate	pН	Conductivity	Turbidity		Temperature	ORP
hou	rs)	(ft btoc)	(ml/min)	p.,	www.s/cm	(NTU)	oxygen (mg/l)	(°C)	(mv)
909		11.40	~160	6.61	0.629	0	1.90	14.55	214
911				6.59	0.635	0	1.64	13.99	217
914				6.53	0.641	Ð	1.47	13.34	222
913				6.45	0.650	9	1.38	12.81	227
920				6.36		6	1.28	12.32	232
92				6.33	0.664	0	1.24	11.48	234
		┠─┼──		6.31	0.671	0	1.19	11.40	234
920				6.34	0.678	0	1.1(0	μ.35	233
929				<u></u>				· · · · · · · · · · · · · · · · · · ·	
				<u> </u>					
			<u> </u>			· · ·			
		<u> </u>	<u> </u>						
	<u> </u>	<u> </u>		Stabiliz	ation of Parameter	ers (stabilization ac	hieved for three	s consecutive meas	surements)
Tin	ne	Depth to	Total Removed	pH	Conductivity		Dissolved		ORP
FROM	То	Water	> Change in Storage (Y/N)?			(0())	oxygen (%)	(9/)	(771)
		(ft btoc)	<u> </u>	<u> </u>	(%)	(%)		(%)	(mv) 0
923	926	0	<u> </u>	0.02	1.04	0	4.03	0.69	
926	929	0	<u> </u>	0.03	1.03	0	2.52	0.44	<u> ' </u>
923	929	Ó	Y	20.0	2.06	0	6.45	1.13	<u> </u>
		<u> </u>	<u> </u>	<u> </u>	<u> </u>	 		<u> </u> =	<u> </u>
Recomm Stabill:		≤ 0.3 ft. total	NA	+/- 0.1 unit	+/- 3%	<5 NTU or +/- 10%	+/- 10% if >0.5 mg/L	+/- 3%	+/- 10 mv
Stabiliz (Yes									<u> </u>
Sample	Time: _	932		<u> </u>		Reviewed by: -		<u> </u>	
ft btoc		feet below to			J Nephelametric Tu		°C mv	degrees Ceistus miliivoits	
mi/min		milliliters per microseimen	minute is per centimeter	mg/ ms/cm	l milligrams per lite milliseimens per c				
μs/cm		Ulicicaciueu	Por ournamous	.,,					

............

والمراجع والمحاصر والمحمول والمحمو والمحمو والمعام والمعام والمحمو والمحمو والمحمو والمحمو والمحمو والمحمو

e de la constant accordante de

		LEGO	SETTE, BR	ASHEA	RS & GR/	HAM, INC.	PAGE	OF	1
	Ž Ž					SA	MPLE DATE:	2-10-14	
		LOW	-FLOW SA	MPLIN	G LOG	тот,	AL#WELLS:	15	
Client Na	me:		Beta Group			Sample Pump:	Geopump		
Project Lo	ocation	<u>990 Ma</u>	<u>in St North. So</u>	outhbury.	<u>ct</u>	Tubing Type:	LDPE -	Tygon -	
Sampler(s):		PL JP			Monitoring Equi	pment: _	<u>YSI</u>	<u> </u>
Well I.D.		1.44	N-4			Screen Setting		to _	
Well Diar	neter (i	nches): _	2"			Tubing Intake (f	t btoc):	いね	<u> </u>
Total Dep	oth (ft b	toc):	20.81			Comments:	Pump on at	1617	
Depth to '	Water ((ft btoc): _	<u> 7.F</u>			Connort to Y	SI DE	世纪	
		(Vear							
Tim	e	Depth to			Wa	ter Quality Moni	itoring Parar	neters	
		Water	Rate	рĤ	Conductivity	Turbidity		Temperature	ORP
(hour	(e)	(ft btoc)	(ml/min)		(us/cm)	(NTU)	oxygen (mg/l)	(°C)	(mv)
(1534		3.47		3,33	442	108.1	4.85	9.66	957
1930		347	100	613	-4410	59 5	4.71	9.7U	63
7 154		847	100	6,04	-441	512	474	5, 72	ä;
		- 6 47	11.	6.12	42-1	531	4.75	5.69	30
	· <u>)</u>	<u> </u>	<u>f</u> 'd j	<u> </u>					
· · · · · ·			,						
									,
					-*				
	·								
									-
		······································		Stabiliz		ers (stabilization act			
Tim	ne	Depth to	Total Removed > Change in	рĤ	Conductivity	Turbidity	Dissolved oxygen	Temperature	ORP
FROM	то	Water (ft btoc)	Storage (Y/N)?		(%)	(%)	(%)	(%)	(mv)
1539	あれえ			0.06	1.01	2.13	0.42	0.31	\mathcal{B}
1542	15/44	0		0.03	0.31	1.52	0.21	0.31	1
1539	1545	<u> {</u>	· ·	0.03 (0. ct)	1.31	0.67	0.31	0.10	3
1-1 <u>1</u>	12/3								
Recomm Stabiliz		<u>≺</u> 0.3 fL total	NA	+/- 0.1 unit	+/- 3%	<5 NTU ar +/- 10%	+/- 10% f >0.5 mg/L	+/- 3%	+/- 10 m
Stabiliz		Tes		305	Ye	Je Je	Jo.	مەل	7 700
<u>(Yes/</u>		550	<u> </u>	<u> </u>	<u></u>	Reviewed by:	<u> </u>		
Sample	1 (me:		of caring		Nephelometric Tu	-	 °C	degrees Celsius	
ft btoc ml/min		feet below top milliliters per r			milligrams per lite		mv	millivolts	
μs/cm			per <u>cantimeter</u>	ma/cm	milliselmena per o	entimeter	<u> </u>	<u></u>	

Ϊ

2-12.2

.....

SALAR CONTRACTOR CONTRACTOR

. . .

	<u>—</u> 入	LEGG	ETTE, BR	ASHEA	RS & GRA	HAM, INC.			1	
								2/9/16		
		LOW	FLOW SA	MPLIN	g log	TOT/	AL#WELLS:	15		
Client Na	<u></u> пе:	<u> </u>	Beta Group			Sample Pump:	Geopump	· · ·		
Project Lo	cation	: <u>990 Mai</u>	in St North, Sc	outhbury, (<u>ct</u>	Tubing Type:	LDPE - 50	Tygon - 1		
Sampler(s):	- (PL JP			Monitoring Equi	oment:	Horiba		
Well I.D.		Mw-9				Screen Setting (ft btoc):	<u>/6</u> to	21	
		nches):	-			Tubing Intake (f	t btoc):	18		
Total Dep	oth (ft b	toc): <u>2</u> (0.80			Comments:	Pump on at	<u>_/451</u>	<u>`</u>	
Depth to V	Water	(ft btoc): _	11.21			<u></u>				
				~ ~150	~15 mins before attaching to Heriba					
Time	e		Evacuation		Wa	iter Quality Moni	toring Parar	neters		
		Water	Rate	рН	Conductivity	Turbidity		Temperature	ORP	
(hour	s)	(ft btoc)	(ml/min)		(Mas/cm)	(NTU)	oxygen (mg/l)	(°C)	(mv)	
150	9	12.30	~180	6.07	0.531		2.67	13-70	120	
151	2			5.75	0.388	0	1.77	13.08	98	
1518				5.85	0.405	0	1.59	12.61	92	
1519			,	5-84	0.509	0	2.00	12.00	83	
152				635	0.472		1.76	11.39	66	
152				6 44	0.547	51.3	1.70	10.93	55	
152				6.61	0.615	49.4	122	10.31	50	
153				6.50	0.426	43.7	1.52	10.05	48	
153	ζ.			6.53	0 429	38.0	1.28	9.61	39	
15				6.60	0.433	36.4_	1.25	9.54	37	
153	39		\checkmark	6.62	0.435	35.1	1.24	9.50	30	
	·					<u> </u>		<u> </u>		
			(#			ers (stabilization act	Dissolved	Consecutive mease Temperature	ORP	
Tin	e	Depth to Water	Total Removed > Change In	рĤ	Conductivity	Turbidity	oxygen			
FROM	TO	(ft btoc)	Storage (Y/N)?		(%)	(%)	(%)	(%)	(mv)	
1533	1536	0	у	0.07	0.92	4.21	2.34	0.73	2	
1534	1539	0	· 1	0.02	0.46	3.57	0.80	0.42	7	
1533	1531_	0	_Y	0.09	1.38	7.63	3.13	1.14	9	
					<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Recomm Stabiliz		≤ 0:3 ft. total	NA	+/- 0.1 unit	+/- 3%	<5 NTU or +/- 10%	+/- 10% if >0.5 mg/L	+/- 3%	+/- 10 mv	
Stabiliz (Yes/										
Sample		1545				Reviewed by:				
ft btoc		feet below top		NTU Nephelometric Turbidity Units °C degrees Celsius						
mi/min		milliliters per r	per centimeter	mg/l ms/cm			m v			
µs/cm		nicrosettiens	Por contraction	ms/cmmtiliseimens per centimeter						

....

• • •

.

	LEGO	ETTE, BR	ASHEA	RS & GRA	HAM, INC.	PAGE _	_1_OF	1		
	LOW	-F'LOW SA	MPLING	GLOG		_	15			
Client Name:		Beta Group		<u></u> :	Sample Pump:	Geopump				
Project Locatio	n: <u>990 Ma</u>	in St North, Sc	uthbury, (<u></u>	Tubing Type:	LDPE -	Tygon			
Sampler(s):		PL (JP)			Monitoring Equi	pm <u>ent: </u>	<u>SI</u>			
Well I.D.	HW)-1	0		-	Screen Setting (ft btoc):to					
Well Diameter	(inches): _	<u></u>			Tubing Intake (f		<u>~ 12'</u>			
Total Depth (ft	btoc):	14,77			Comments:	Pump on at	OB FRO	<u>) </u>		
Depth to Wate				/	conned to 4519	<u> 330 </u>				
Well Condition			turbi	of publicu	 \		······			
Time	Depth to	Evacuation		Wa	ter Quality Mon	itoring Parar	neters			
	Water	Rate	рн	Conductivity	Turbidity		Temperature	ORP		
(hours)	(ft btoc)	(ml/min)		(us/cm)	(NTU)	oxygen (mg/l)	(°C)	(mv)		
<u> (10013) </u>	<u>(</u>	200	4.90	375	4200	3,94	513	10		
ONC -	<u></u> <u> </u> <u> </u>	200	4,99	371	2860.6	1.32	5.17	87		
Dure		rel III	weit	for red	1					
951	16.32	300 150	4,65	378	3300	1,74	6.01	93		
954	6.31	150	4.32	373	2430	0.87	5.65	92		
957	6.30	11	5-01	367	1897	0.73	5.72	87.		
1000	63		5-04	374	2707	17.0	6.17	36		
1003	6.3.5		5.12	37(2740	0.49	6.23	26_		
10:06	6.0		5,17	375	2690	0.6	6:30	84		
1004	6.31		52	374	2562	0.60	6.37	86		
1017								ļ		
			<u> </u>	<u> </u>		<u> </u>		<u> </u>		
		T-tel Demound			ters (stabilization ac Turbidity	Dissolved				
Time	Depth to Water	> Change in	рН	Conductivity		oxygen				
FROM TO	(ft btoc)	Storage (Y/N)?		(%)	(%)	(%)	(%)	(mv)		
bob low	U U		(),0)	6 T	21	6	1.11	<u>a</u>		
COL LOD			0.03	0.77	476	45	1.10	2_		
1006 101-			0.08	6.53	6.30	1.45	226	0		
			<u> </u>	<u> </u>	<u> </u>		<u> </u>	 		
Recommended Stabilization	total	NA	+/- 0.1 unit	+/- 3%	<5 NTU or +/- 10%	+/- 10% if >0.5 mg/L	+/- 3%	+/- 10 m		
Stabilization: (Yes/No)	ye.		ge.	JS.	905	<u> </u>	78	<u> </u>		
Sample Time:					Reviewed by: _			* <u> </u>		
ft bloc mi/min	feet below to milliliters per		NTL mg/l ms/cm	l Nephelometric T milligrams per lite milliseimens per	51	°C mv	degrees Celsius millivolts			

.....

إلا الحجاج موجد لعدا الإيجاب بالالاوراد والتاران المحجد بالمتربعون دادر مرهمه ولايتها

	<u> </u>	LEGO	SETTE. BR	ASHEA	RS & GR	AHAM, INC.	PAGE		<u> </u>] -
			/-FLOW SA			S/	AMPLE DATE: TAL # WELLS:			6 - -
Client Na	ime:		Beta Group			Sample Pump:	Geopump			
Project L	ocation	: <u>990 Ma</u>	in St North, S	outhbury,	ст	Tubing Type:	LDPE -	Tygon -		
Sampler	(s):		PL JP			Monitoring Equ	ipment: _	·		
Well I.D.		9	1.J11			Screen Setting	(ft btoc):	to		
Well Dia	meter (i	inches): _	<u></u>			Tubing Intake (ft btoc): 🛛 💆	2/21	<u> </u>	
Total De	pth (ft b	itoc):	14.67			Comments:	Pump on a	t 1500		
Depth to	Water	(ft btoc):	<u>4.04</u>			alturbad (1) 196	4 . S. 11 3	iñ U		
Well Cor		<u> </u>	······································							
Tim	le	Depth to	Evacuation		Wa	ater Quality Mon	itoring Para	meters		
		Water	Rate	рН	Conductivity	Turbidity	Dissolved	Temperature	ORP	Ť
(hou	rs)	(ft btoc)	(ml/min)		us/cm	(NTU)	oxygen (mg/l)	(°C)	(mv)	
1511		135	150 1	7.12	416	1004.0	الله ولايد	1.91		
	<u>r</u> 0	- Re	call brat	102	istill P	urging				
1535		21, ^C j(150	3.4	C.C.	3923	1447	Či	1.46	
1532		4.47	:50	361	20_	39.29.5	14.47	<u> </u>	1367	
541		4. 12	Ui/	3.91	25	<u> 230. I</u>	3.59	1033	-167	
134	4	4.98		3.93		169.4	3.27	1.16	126	Carlos Carlos
1547	<u> </u>	4.99		3.14	344 0		2.55	1,21	ias_	Phine
1550		5.W	- 1	3.55	156	a05, 9	11.47	1.20	135	
<u>'7</u> 7	5	5.00		نه <u>او</u> را	356	194.5	3.30	i al	1.35	
[<u> </u>		Stabiliz	ation of Parameter	ers (stabilization ac	hieved for three	e consecutive meas	surements)	
Tin		Depth to Water	Total Removed > Change in	pH	Conductivity		Dissolved oxygen	Temperature	ORP	
FROM	то	(ft btoc)	Storage (Y/N)?	<u> </u>	(%)	(%)	(%)	(%)	(mv)	
1547	1650	0.0		10.0	174	1.19 %	3.1	0.9	0	l
1550	653	0	ļ	0.01	<u>C.59</u>	533	72	0_0	0	
1547	155)	loor	 	0.02	2.32	6.66	10.1	<u> </u>	X	
Recomm Stabiliz		<u>≤</u> 0.3 ft. total	NA	+/- 0.1 unit	+/- 3%	<5 NTU or +/- 10%	+/- 10% if >0.5 mg/L	+/- 3%	+/- 10 mv	
Stabiliz (Yes/		(9)		1/00	YQS	Nes	1052	1120	C V	
Sample		155	¥			Reviewed by:]
ft btoc ml/mln		feet below top milliliters per n	nīnute	NTU mg/l	milligrams per liter	•	°C mv	degrees Celsius millivolts		
μs/cm		microselmens	per centimeter	ms/cm	milliseimens per c	enumeter	· · · ·			<u>1</u>

	LEGC	SETTE, BR	ASHEA	RS & GR	AHAM, INC.		OF		
	LOW	-FLOW SA	MPLIN	G LOG		MPLE DATE: . AL # WELLS: .	2/10/11 15		
Client Name:		Beta Group		·····	Sample Pump:	Geopump			
Project Local	tion: <u>990 Ma</u>	in St North, So	outhbury.	<u>. TC</u>	Tubing Type:	LDPE - Tygon -			
Sampler(s):		PL JP			Monitoring Equi	oment: <u>\3</u>			
Weil I.D.		W-12		Screen Setting (ft btoc): to					
Well Diamete	er (inches):	211			Tubing Intake (f				
Total Depth ((ft btoc):	2144		Comments: Pump on at 1123					
	ter (ft btoc):				<u></u>	<u></u>		·· · -=	
			1 (M) ()	Lad in	SCII IN IS	Fina	Vor Im	<u>, 13 </u>	
Time	Depth to) •		ater Quality Moni			<u> </u>	
	Water	Rate	pH	Conductivity			Temperature	ORP	
			P''			oxygen			
(hours)	(ft btoc)	(ml/min)		(us/cm)	(NTU)	(mg/l)	(°C)	(mv)	
1135	12.99	1	475	<u> 503 </u>	1010	1.12	10.44	<u>50</u>	
1136	13.55	150	4.34	506	542	1.00	10.34	51	
IIM	14.16	150	R.04	493	686	15-91	1004	_ <u>5</u> Y	
INM	A14.64	150	5.23	-1210	543	0.87	9.95	63	
· 1147		150	5.32	473	2784	ð 83	9.84	65	
1150	15.42		543	464	4366	171	7,31	65	
1193			5.47	452	4382	075	9.24	45	
1150	15.91	Ϋ́́4	540	444	215754	0.73	Ÿ. K	<u>)</u>	
		worts	on di	wana si	amplin			•)	
			\Box	<u> </u>					
· · · · · · · · · · · · · · · · · · ·									
			Stabiliza	tion of Paramet	ers (stabilization ach	ieved for three	consecutive meas	urements)	
Time	Depth to	Total Removed > Change in	pН	Conductivity	Turbidity	Dissolved	Temperature	ORP	
FROM T	O (ft btoc)	Storage (Y/N)?		(%)	(%) .	oxygen (%)	(%)	(mv)	
	<u></u>	[.		280	<u></u>	1.32	0.21	()	
1150 115		ļ	0 <u>~04</u> €0,02		0.00	2.67	1.40	<u> </u>	
1153 115		<u> </u>		- •	0.15	3.95	1.61	· · ·	
1150 115	<u> </u>	[0.06	409			<u> </u>		
Recommende Stabilization	_	NA	+/- 0.1 unit	+/- 3%	<5 NTU or +/- 10%	+/- 10% if >0.5 mg/L	+/- 3%	+/- 10 m	
Stabilization			70	NJ	- P	yes !	<u>Jo</u>	Je Je	
(Yes/No) Sample Time	Sample Time:			<u> </u>	Reviewed by:	<u></u>			
ft bloc feet below top of casing			NTU	Nephelometric Tu	ric Turbidity Units °C degre		degrees Celsius		
mi/min milliliters per minule			mg/i milligrams per liter my millivolta						
us/cm				milliseimens per o	entimeter				

 $(p_{1}, q_{2}) \in \mathbb{R}^{2} \times \mathbb{R$

	$\overline{\mathbb{A}}$	LEGO	SETTE, BR	ASHEA	RS & GRA	HAM, INC.	PAGE		1
		LOW	FLOW SA	MPLIN	g log		2-10-16		
Client Na			Beta Group	<u> </u>		Sample Pump:	Geopump		
	-		in St North. So	outhbury,		Tubing Type:	-	Tygon -	
Sampler(, <u> </u>	PL (JP)			Monitoring Equi		<u>135</u>	
Well I.D.			HWB			Screen Setting	(ft btoc):	to	
Well Diar	neter (i	nches): _	211			Tubing Intake (it btoc):	185~	
Total Dep	oth (ft b	toc):	22.44			Comments:	Pump on at	L_{BOL}	
Depth to	•	-	9.79			attuction to 1	NGB2	1 full Q1 P2	33
			where items					<u> </u>	
Tim		Depth to	Evacuation		Wa	ter Quality Mon	itoring Para	meters	
		Water	Rate	рН	Conductivity	Turbidity	Dissolved	Temperature	ORP
(hou	rs)	(ft btoc)	(ml/min)		us/cm	(NTU)	oxygen (mg/l)	(°C)	(mv)
135	<u></u> _	61.40	tt 150	(75	3(7	56.3	2.00	9,34	91.
1336	,	13. 94		6.8	505	1179	1.06	9,66	77
133					394	103.	0 27	5.92	55
124	<u> </u>	1302			400	65.0	1.73	993	71
134		13 07		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	403	10.6	0 -4	4.45	7?
1 Be	<u> </u>	30		100	411	50.7	0.76	9.97	76
	51	55		7.15	415	49.2	0B	10.0	71
	54	13.12		121	415	<u> </u>	17.51	10. 30	71
17	551	13,21	- V	7.27	411	467	0.70	10.50	7(
<u>`</u>					~w				` <u>`</u>
					-				
						i			
				۰ ۰		ers (stabilization ac			
Tim	ie	Depth to Water	Total Removed > Change in	рН	Conductivity	Turbidity	Dissolved oxygen	Temperature	ORF
FROM	то	(ft btoc)	Storage (Y/N)?		(%)	(%)	(%)	(%)	(mv
1351	1354	003	<u> </u>	0,12	0	14 8.74	2.24	a, y)	3
1354	1357	003			0.04	5.57 1.64	141	1.90	
1251	<u>fčć/</u>	0.04		<u>Ö.B</u>	0.24	BP Dril	4.11	476	4
Recomm		≤ 0.3 ft. total	NA	+/- 0.1 unit	+/- 3%	<5 NTU or +/- 10%	+/- 10% if >0.5 mg/L	+/- 3%	+/- 10
Stabiliz	ation:	Ver		No	40	NO SEO	96	No	N.
Sample		1400)			Reviewed by:			
					Nephelametric Tu		°C	degrees Celsius	

 $\operatorname{Arc}(\mathbb{R}^{n}) \to \operatorname{Arc}(\mathbb{R}^{n}) \to \operatorname{Arc}(\mathbb{R}$

	LEG	GETTE, BR	ASHE	RS&GR	AHAM, INC	PAGE		1		
				· · ·	SAMPLE DATE: 2-10-14					
	LOW	/-FLOW SA	MPLIN	GLOG		TOTAL # WELLS:1				
Client Name:		Beta Group			Sample Pump	: Geopump				
Project Locatio	on: <u>990 Ma</u>	ai <u>n St North, S</u> e	outhbury,	<u>CT</u>	Tubing Type:	LDPE -	Tygon -			
Sampler(s):		PL JP			Monitoring Equ	uipment: _				
Well I.D.	17-1	}			Screen Setting	(ft btoc):	to			
Well Diameter	r (inches): _	0.11			Tubing Intake	(ft btoc):	·			
Total Depth (ff	t btoc):				Comments:	Pump on a	t			
Depth to Wate	er (ft btoc):	209								
Well Condition	1:									
Time	Depth to	Evacuation	······	Wa	iter Quality Mo	nitoring Para	meters			
	Water	Rate	рН	Conductivity	Turbidity	Dissolved	Temperature	ORP		
(hours)	(ft btoc)	(ml/min)		(us/cm)	(NTU)	oxygen (mg/l)	(°C)	(mv)		
(1100)					(
· <u>··</u> ·										
· · ·					1_					
	1	NA I	Σ	NAZ						
			ノ		+1° - L.K	<u>-</u>				
		·····								
			<u> </u>							
					-		·			

		*								
			Stabiliz	ation of Paramete	ers (stabilization ac	chieved for three	consecutive meas	surements)		
Time	Depth to	Total Removed > Change in	рН	Conductivity	Turbidity	Dissolved	Temperature	ORP		
FROM TO	(ft btoc)	Storage (Y/N)?		(%)	(%)	oxygen (%)	(%)	(mv)		
		<u> </u>		<u>, (7-7</u>		<u></u>				
	-		<u> </u>							
		,		-			,,,,,,,,			
	-+		-							
Recommended Stabilization	≤ 0.3 fL total	NA	+/- 0.1 unit	+/- 3%	<5 NTU ` or +/- 10%	+/- 10% if >0.5 mg/L	+/- 3%	+/- 10 mv		
Stabilization: (Yes/No)										
Sample Time:	1445	<u> </u>		<u> </u>	Reviewed by: -			<u></u>		
ft bloc	feet below top	of casing	NTU	Nephelometric Turk	-	•°C	degrees Celsius	- —		
mVmin	miláliters per n	-		milligrams per liter	-	mν	millivolts			
<u>µs/cm</u>	microseimens	per centimeter	ms/cm	milliselmens per ce	ntimeter	<u> </u>	<u> </u>			

~

.

se en la Real de land de la company en la contraction de la la deservation de la contraction de

		GETTE, BR			OF 15						
Client Name:		Beta Group			Sample Pump: <u>Geopump</u>						
Project Locatio	n: <u>990 M</u> a	ain St North. S	outhbury.	CT	Tubing Type:	LDPE -	Tygon -				
sampler(s):		PL JP	1								
 Well I.D.	٩	ZB	<u> </u>		Screen Setting	(ft btoc):	to				
Well Diameter					•		·	1			
Total Depth (ft							t				
Depth to Water							•				
Well Condition				<u></u>				<u> </u>			
Time	Depth to	Evacuation		\\/	ater Quality Mor	nitoring Para	méterr				
	Water	Rate	pH	Conductivity			Temperature	ORP			
(hours)	(ft btoc)	(m!/mín)	1. F		(NTU)	oxygen (mg/l)	(°C)	(mv)			
								<u>_</u>			
			Stabiliz	ation of Paramete	ers (stabilization ac	hieved for three		urements)			
Time	Depth to	Total Removed > Change in	рН	Conductivity	Turbidity	Dissolved	Temperature	ORP			
FROM TO	(ft btoc)	Storage (Y/N)?		(%)	(%)	oxygen (%)	(%)	(mv)			
							· · · · · · · · · · · · · · · · · · ·	· 			
Recommended Stabilization	≤ 0.3 ft. total	NA	+/- 0.1 unit	+/- 3%	<5 NTU or +/- 10%	+/- 10% if >0.5 mg/L	+/- 3%	+/- 10 mv			
Stabilization: (Yes/No)											
Sample Time: -	1020	<u> </u>	<u> </u>	<u></u>	Reviewed by: _						
ft btoc ml/min s/cm	feet below top millijiters per n	-	NTU mg/l ms/cm	Nephelometric Tu milligrams per liter milliseimens per c	rbidity Units	°C mv	degrees Celsius millivolts				

eesterre raakuse

	\geq	LEGG	ETTE, BRA	SHEAI	RS & GRA	HAM, INC.	PAGE	OF		
	7					SA	MPLE DATE:	3/17/20	<u>016</u>	
		LOW	-FLOW SA	MPLIN	G LOG	TOTAL # WELLS:2				
	-			_			·			
Client Na	ime:		Beta Group			Sample Pump:	Geopump		·	
Project L	ocation	1:	<u>990 Main St No</u>	orth Southb	<u>urγ, CT</u>	Tubing Type:	LDPE - 17	/ <u>Tygon - 1/</u>		
Sampler(s): P. Staub Monitoring Equipment: <u>Horiba</u>										
Well I.D Screen Setting (ft btoc); to										
Well Diameter (inches):2-inch Tubing Intake (ft btoc):16 fr										
Total Dep	oth (ft b	otoc):	18.3			Comments:	Pump on a	1 11-1	S	
Depth to	Water	(ft btoc):	11.65				Horiba full			
Well Con			- Under	Brech 1	sd ·					
Tim	е	Depth to	Evacuation		Wa	ater Quality Mon	itoring Para	meters		
		Water	Rate	рН	Conductivity	Turbidity		Temperature	ORP	
(hou	rs)	(ft btoc)	(ml/min)		mstan	(NTU)	oxygen (mg/l)	(°C)	(mv)	
11:16	<u> </u>	12.35	200	5.69	0.084	51.3	10,77	17.20	116	
11:10		12-4	200	4-42	0-911	40.8	1.53	16.48	50	
(1:2)	<u> </u>	12.4	700	4.00	0.915	36.9	6.28	16.28	64	
10:2		12.4	200	3.69	0.715	37.5	5.35	16.21	76	
11:2	7	12.4.	200	3.62	0.914	403	4.68	16.21	85	
11:30)	12.4	200	356	0.910	43,3	4.27	16.23	91	
11.33	:	12.4	2.0	3.34	0.908	45.6	4.01	16.26	95	
11:34		12-4	2 =0	3./1	0.90)	48.8	3.75	16.30	100	
11:39		12.5	200	2.96	6,900	. 51.3	3.43	16.31	1039	
11:42		12.5	200	3.05	0.897	51.5	3.30	16.38	107	
11:45		12.5	200	3.0B	0.898	\$19.8	3.40	16:39 .	_110	
						d for three cons				
Tim	e	Depth to Water	Evacuation Rate	pH	Conductivity	Turbidity	Dissolved oxygen	Temperature	ORP	
FROM	TO	(ft btoc)	(ml/min)	,	()	(NTU)	(mg/l)	(°C)	(mv)	
1134	1142	4 12.5	100	+0.09	- 0.3%	+ 0.44.	-3,8%	4 0.4 %	+ 4	
	1145	69]	.	40.03	+0.1%	- 3.3%	+3.0%	+ 0.1%	12	
1139	(145	91		+0.#	-0.2%	- 2.9%	-0.9%	4+0.5%	+7	
		<u>_</u>								
	Recommended Stabilization +/- 0.3 100-500 +/- 0.1				+/- 3%	+/10%	+/- 10%	+/- 3%	+/- 10	
Stabilization: V V V V V V V							7			
(Yes/f	· · · ·	11:46			<u> </u> '	Boulowed here	<u> </u>	<u> </u>	<u> </u>	
Sample T	ime: —		-4	- 11	March - (Reviewed by:				
ft btoc m!/min		feet below top milliters per m	-		Nephelometric Tur milligrams per liter	-	°C mv	degrees Celsius millivoits		
μs/cm	_	microseimons						<u> </u>		

	\geq	LEGG	ETTE, BRA		RS & GRA	HAM, INC.	PAGE	OF			
	P					S	AMPLE DATE:	<u>3/17/20</u>	016		
		LOW	FLOW SA	MPLIN	G LOG	TOTAL # WELLS: 2					
Client Na	Client Name: Beta Group Sample Pump: Geopump										
Project Location: 990 Main St North Southbury, CT Tubing Type: LDPE Tygon											
Sampler(s): P. Staub Monitoring Equipment: <u>Horiba</u>											
Well I.D Screen Setting (ft btoc): to											
Well Diameter (inches):2-inch Tubing Intake (ft btoc):9.5											
Total Dep	Total Depth (ft btoc): 21.4 Comments: Pump on at [2:28]										
I .	-	(ft btoc):					Horiba full	·			
Well Con	dition:	Good					· <u> </u>				
Tim		Depth to	Evacuation			ater Quality Mon	itoring Para	meters			
		Water	Rate	рH	Conductivity	Turbidity	Dissolved	Temperature	ORP		
(hour	rs)	(ft btoc)	(ml/min)		\bigcirc	(NTU)	oxygen (mg/l)	(°C)	<u>(mv)</u>		
12:7	ર	9.55	200	4.70	1.03	220	6.40	13.87	132		
jn : 3	3	9.4	200	3.78	1.05	160	4.84	13.27	121		
12:3	6	10.1	150	2.92	1.04	150	3.60	13,63	126		
1237		11.7	100	2.36	1.04	115	3.22	12.92	120		
12.42	-	[2]	00	2.32	1.04	124	3.17	2.91	118		
1245		12.5	100	2,25	1.04	96.6	3.06	12.84	114		
124		13.2	. 100	2.15	1.04	¥1.9	2.11	12-91	109		
1251		39	00	2.04	104	88.9	2.79	12.93	106		
125		14.3	2100	1.98	1.84	\$2.7	2.73	2.96	104		
125		14.8	<100	1.99	1.04	79.8	2,7.0	12.98	100		
130		15.3	<100	2.03	1.04	94.3	2.78	(2.78	93		
130		15.7	<100	2.09	1.04	86.3	2.85	13.02	90		
		Stabilization	n of Paramete Evacuation	r <u>s (</u> stabiliz pH	zation achieve Conductivity	d for three cons Turbidity	ecutive mea		ÓRP		
Tim		Water	Rate	рп	Conduçavity	Turbidity	oxygen	Temperature	UKF		
FROM	то	(ft btoc)	(ml/min)		()	(NTU)	(mg/l)	(°C)	(mv)		
1257	1300	10.5	2100	10.04	+0	+5.6%	+3%	40%	-7		
1300 1	303	fo .4	<u>ا</u>	t0.06		+2 4 %	+2.5%	+1.3%	-3 .		
1257	1303	+0.9	/	+0.1	V	+8.1%	+5.6%	11.3%	- 10		
				<u></u>							
Recommended Stabilization+/- 0.3100-500+/- 0.1				+/- 3%	+/- 10%	+/- 10%	+/- 3%	+/- 10			
Stabilization:							Y				
Sample T		1300	(· · ·	Reviewed by:	`	· · · · · · · · · · · · · · · · · · ·			
ft bloc		feet below top	=		Nephelometric Tur	-	°C	degrees Celsius			
ml/min μs/cm		milliliters per m microseimons		mg/l	milligrams per liter		mv	millivolts			

- - - - - -

		LEGO	GETTE, BR	ASHEA	RS & GRA	HAM, INC.	-	/ OF	<u> </u>		
		LOW	FLOW SA	MPLING	g log	SAMPLE DATE: <u><u> -6-2915</u> TOTAL # WELLS: <u>3+272</u></u>					
Client Na	ime:	BETA - Lu	theran Home	of Sothbur	у	Sample Pump: geopump (peristaltic)					
Project L	ocation:	<u>990 Mai</u>	n St. N. South	bury. CT	······································	Tubing Type:	PE &	Silicone			
Sampler((s):	T. San	dor			Monitoring Equips	nent:	YSI			
Well I.D.	· · · ·	MIN-1		• • • • • •		Screen Setting (ft	btoc):	to			
Well Diar	neter (inc	hes): _	2"			Tubing Intake (ft b	itoc): _	N 17.5			
Total Der	oth (ft btoo	c):	18.49	5 (silly a	in hottom)	Comments:	Pump on @	936			
Depth to	Water (ft		13.18		/	Well condition: 6.	ed (pratit	d in exacut	an anen)		
	me	Depth to	Evacuation		V	Vater Quality Moni	toring Paran	neters			
		Water	Rate	pН	Conductivity	Turbidity		Temperature	ORP		
/h		(ft_btoc)	(ml/min)		(μ s/c m)	(NTU)	oxygen (mg/l)	(°C)	(mv)		
<u> </u>	urs)			6.46	778	180.0	1.7/	19.05	-64.1		
945		13.46	<u>~25ø</u>	6.41	779	132.8	1.24	17.09	-66.3		
948	 .	13.45		6.41	779	1/6.2	1.09	19.19	-66.8		
<u>951</u> 954	,	75.45		641	780	97.9	1-\$4	19.38	-64.1		
957		13.44	<u> </u>	6.41	782	85.6	\$ 96	19.42	61.6		
		13:44		6.42	786	83.0	0.92	19.50	-59.4		
1¢¢ 1¢¢	•	13.44		6.42	7-9¢	69.8	0.90	19.55	-587		
190				6.42	793	68.1	0.90	19.57	-58.5		
199											
		<u> </u>	<u>-</u>								
ļ		Stabilizatio	n of Paramet	ers (stabili	zation achiev	ed for three conse	cutive meas	urements)			
Ti	me	Depth to	Evacuation	pH	Conductivity		Dissolved		ORP		
FROM	то	Water (ft btoc)	Rate (ml/min)	1	(µs/cm)	<u>(NTU)</u>	oxygen (mg/l)	(°C)	(mv)		
945	948			Ø.65.	<u> / /</u>	<u>47.2 x</u>	Ø-47x	0.04 v	2.21		
948	951	Ø.\$1	<u> </u>	- 1	<u>- v</u>	16.6 x	Ø.15 x	\$.16 V	0.5V		
951	954	0-				/1.3 x	0.05-	Ø.19 L	12.70		
954	957	Ø.41	<u> </u>	- v	2 1	<u> 12.3 x</u>	4.682	0.04 V			
957	1000		<u> </u>	0.010	4 4 1	·	Ø. 64 L	0.08 2			
1660	1003		<u> </u>		4 4	12.2 ×	6.620	0.05 1			
1003	1006	<u> </u>	<u> </u>	<u> </u>	<u> 3 v</u>	<u>+</u>		<u>ø ø 2 v</u>	Ø.2V		
	innended	+/- 0.3	100-500	+/- 0.1	+/- 3%	+/- 10%	+/- 10%	+/- 3%	+/- 10		
Stabilizatio	on: (Yes/No)	<u>y</u>	Y ·	γ	Υ	H	Y	У	<u> </u>		
Sample	Time:	 /\$/9	1		<u></u>	Reviewed by:		·			
ft btoc		feet below top	-		Nephelometric Tu	-	°C	degrees Celsius			
mi/min µa/cm		milliliters per t microselmons	ninute per centimeter	mg/l	milligrams per lite	г <u>.</u>	mv	millivolts			
	 —										

- Analysis and the second s

			FLOW SF			RAHAM, INC. PAGE / OF / SAMPLE DATE: //-6-20/5 TOTAL # WELLS: 30 202				
Client Na	ame;	BETA - Lu	theran Home	of Sothbu	 ry	Sample Pump:	geopump (peristaltic)		
Project L	ocation:	990 Mai	in St. N, Sout	hbury, CT		Tubing Type:	18 8	1 Silicone.		
Sampler	(s):	T. Sana	lar			Monitoring Equip	ment: _	YSI		
Well I.D.			W-2			Screen Setting (fi	btoc):	to		
Well Dia	meter (inc	hes): _	2"			Tubing Intake (ft	btoc):	~ 17.5 🕷		
Total De	pth (ft bto	c): <u>//.</u>	24 (silly a	in bothoo	<u>n)</u>	Comments:	Pump on @	826		
			12.10 0			Well condition:	food			
	me	Depth to	Evacuation		ν	Vater Quality Mon	itoring Parar	neters		
Į.		Water	Rate	рН	Conductivity	Turbidity	Dissolved	Temperature	ORP	
(ho	urs)	(ft btoc)	(ml/min)		(µs/cm)	(NTU)	oxygen (mg/l)	(°C)	(mv)	
. —		12.52	300	6.35	725	162.2	1-28	19.58	-22.6	
<u>836</u> 839		12.53	<u> </u>	6.35	725	100.8	. 1.21	18.66	-29.1	
842		12.53		6.35	724	77.ø	1.13	19.73	-323	
844	-	12.53		6.35	721	41.8	1.04	19.78	-34.8	
84		12.53	1	6.35	720	29.5	Ø.97	19.81	-37.0	
851		12.53		6.35	719	12.9	6.95	19.83	-38.1	
854		12.53		6.35		14.8	0.94	19.86	-39.¢	
857		12.53		6.35	716	9-1	0.93	19.87	-39.7	
						ed for three conse				
Ť	me	Depth to Water	Evacuation Rate	рН	Conductivity	Turbidity	Dissolved oxygen	Temperature	ORP	
FROM	то	(ft btoc)	(ml/min)		(µs/cm)	(NTU)	(mg/l)	(°C)	(mv)	
836	839	601.		-		61.4 x	0.071	008 ~	6.5 V	
839	842		Í		1 1	23.8	0.18		322	
842	845	-	Í		3 ~	35.2 x	0.091	0.05 V	2.50	
845	848		\$		1 4	12.3 x	0070	0.03 V	222	
848	851	-		<u> </u>	12	9.6 X	0.020	0.02 V	1.12	
851	854	<u> </u>		<u> </u>	2 1	<u>5.1 x</u>	6.010	1.03 V	1.90	
854	857		<u> </u>	<u> </u>	11	<u>5.7 y</u>	0.012	ødiv	Ø.70	
46	imended	+/- 0.3	100-500	+/- 0.1	+/- 3%	+/- 10%	+/- 10%	+/- 3%	+/- 10	
Stabillzatio	on: (Yes/No)	y	y y	Y	У	Н	Y	¥	Y	
Sample	Time:	9.00	1							
Sample Time: ft btoc feet below top of casing ml/min milliliters per minute μs/cm microseimons per cantimeter				NTU Nephelometric Turbidity Units °C degrees Celsius mg/L milligrams per liter mv millivoits						

in managed of the strategies

							HAM, INC	SA	PAGE MPLE DATE: AL # WELLS:	11-6-201	 /5 /P2
		LOW	-FLOY	N SA	MPLING	s LOG			AL # WELLS:		
Client Na	me:	BETA - Lu	theran	Home	of Sothbu	у	Sample Pump: <u>geopump (peristaltic)</u>				
Project Lo	ocation;	<u>990 Mai</u>	in St. N	South	bury CT		Tubing Type:		<u>PE 4</u>	Silicone.	
Sampler(s):	T. Sa	ndor	<u> </u>		<u>.</u>	Monitoring Eq	uipr	nent:	YSI	
Well I.D.									btoc):	to	
Well Dian	neter (inc	hes):		2‴_			Tubing Intake	(ft b	toc):	18.5	
Total Dep	•		19.6				Comments:			1149	
Depth to	•				1139		Well condition		1 A	· · · · ·	
	ne	Depth to					Vater Quality N			neters	
		Water	Ra	te	рН	Conductivity	Turbidity		Dissolved	Temperature	ORP
						_			oxygen	A -1	
(hou		(ft btoc)	(mi/r			(µs/cm)	(NTU)		(mg/l)	(°C)	(mv)
1158	P	12.55	<u>_3ø</u>	¢	649	583	171.0		1.27	17:58	2040
1201	/				6.37	578	195.2		Ø.88	17.43	189.5
120	4	12.54			6.36	578	109.5		Ø.79	17.52	183.3
120	7	·			6.36	577	2.00. Ø		¢.7¢_	17.51	115.7
121	ø	12.53		. <u> </u>	6.37	578	224.9		Ø.67	17.65	186.¢
1213	5				6.37	578	128.8		\$66	17.54	185.8
12/1	6	1253			6.37	579	109.7		Ø.65	17.57	1157
121	9	-		/	6.37	580	41.5		\$ 65	17.59	183.4
[
							ed for three co				
Tìr	me	Depth to Water	Evaci Ra		рН	Conductivity	Turbidity	1	Dissolved oxygen	Temperature	ORP
FROM	TO	(ft btoc)	(mi/i			(µs/cm)	(NTU)		(mg/l)	(°C)	(mv)
1140	12 41				Ø.Ø31		65.8	<u> </u>	100	Ø. 15 V	14.54
1158 12\$1	12¢1_ 12¢4	Ø. Ø]	<u> </u>		P.yIV		4.3	_X ~	Ø.\$9 x	\$ 09 V	7.20
		p. 91					90.5	~	Ø.19X	0.01 V	2.40
1264	1207	- 41			0.412	11	20.9	<u>,</u>	0 63	0.06 V	ØSV
12\$7	12/0	Ø.Ø/					92.1	~	d d l	0111	P.2V
1210	1213					$- \nu$	36.7	<u> </u>	Ø.d/v	6.63V	9.10
1213	12/6			<u> </u>			612485	<u>^</u>	- V	Ø. 03 V	2.32
1216 1219				<u></u>	+/- 10%	<u> </u>	+/- 10%	+/- 3%	+/- 10		
Stabilization +/- 0.3 100-500				+/- 0,1	+/- 3%	H-10%		<u>√</u>	V		
	n: (Yes/No)		<u> /</u>		γ.	<u> </u>	<u> </u>		<u> </u>		
Sample 1	Fime:	122	<i>y</i> .				Reviewed by:				
ft bloc		feet below top milliliters per n	-			Nephelometric Tur milligrams per liter			°C mv	degrees Celsius millivolts	
mi/min µs/cm		mininters per n microseimons		ter						-	<u> </u>

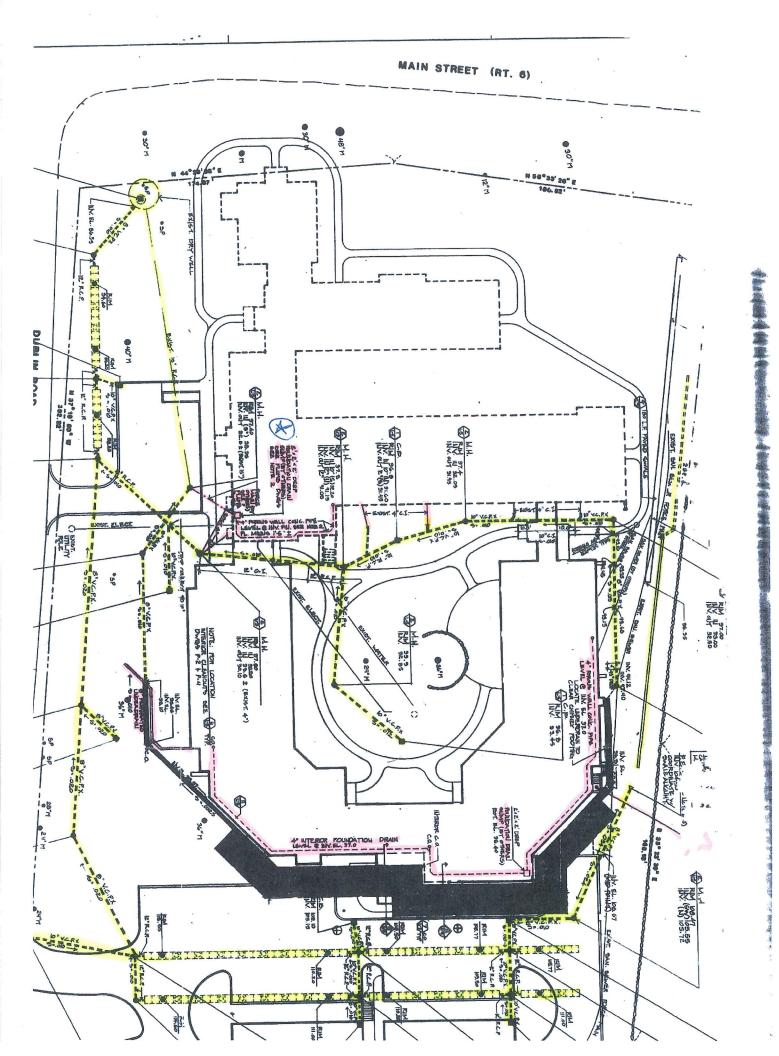
APPENDIX V RECHARGE ESTIMATION

LEGGETTE, BRASHEARS & GRAHAM, INC.

								189775
Stress	Date	Recharge						1.00E-04
Period #	Date	(ft/day)		Мо	onth	Day		
1	7/1/2015	5.77E-03	1.00E+00	2.14E-03		7	1	0.005774
2	7/3/2015	2.63E-03	4.56E-01			7	3	0.002634
3	7/6/2015	1.42E-03	2.46E-01			7	6	0.00142
4	7/12/2015	3.04E-03	5.26E-01			7	12	0.003037
5	7/16/2015	1.92E-03	3.33E-01			7	16	0.001921
6	7/18/2015	1.44E-03	2.49E-01			7	18	0.001441
7	7/23/2015	1.12E-03	1.94E-01			7	23	0.001122
8	7/28/2015	8.23E-04	1.43E-01			7	28	0.000823
9	8/4/2015	9.95E-04	1.72E-01			8	4	0.000995
10	8/11/2015	4.80E-04	8.32E-02			8	11	0.00048
11	8/15/2015	1.02E-03	1.76E-01			8	15	0.001015
12	8/30/2015	3.72E-04	6.45E-02			8	30	0.000372
13	9/15/2015	2.16E-04	3.75E-02			9	15	0.000216
14	9/29/2015	1.77E-04	3.07E-02			9	29	0.000177

4/1/2

	75.3 2.1E+09		1	Flow					l.	Baseflow				
		irect Run(B	ase Flow		Recharge ft/d)	Recharge (in/yr)	ft/d				Recharge (1	Recharge (i f	t/d i	n/yr
4/1/2015	307	307	0	1.46E-07	1.26E-02	5.53E+01		.68E-03	20.50			0.00E+00		0.00
4/2/2015 4/3/2015	328 441	303.7 386.29	24.3 54.71	1.56E-07 2.10E-07	1.35E-02 1.82E-02	5.91E+01 7.95E+01		.00E-03	21.90 29.44	1.16E-08 2.61E-08	1.00E-03	4.38E+00 9.86E+00	3.70E-04 8.34E-04	1.62 3.65
4/4/2015	674	574.43	99.57	3.21E-07	2.77E-02	1.22E+02		03E-02	45.00	4.74E-08		1.79E+01	1.52E-03	6.65
4/5/2015	428	305.94	122.06	2.04E-07	1.76E-02	7.72E+01		.52E-03	28.58	5.81E-08		2.20E+01	1.86E-03	8.15
4/6/2015 4/7/2015	348 319	211.47 171.48	136.53 147.52	1.66E-07 1.52E-07	1.43E-02 1.31E-02	6.27E+01 5.75E+01		.30E-03	23.23 21.30	6.50E-08 7.03E-08	5.62E-03	2.46E+01 2.66E+01	2.08E-03 2.25E-03	9.12 9.85
4/8/2015	306	149.47	156.53	1.32E-07 1.46E-07	1.31E-02 1.26E-02	5.52E+01		.66E-03	21.50	7.46E-08		2.80E+01 2.82E+01	2.23E-03 2.39E-03	10.45
4/9/2015	298	133.89	164.11	1.42E-07	1.23E-02	5.37E+01	4	.54E-03	19.90	7.82E-08	6.75E-03	2.96E+01	2.50E-03	10.96
4/10/2015	372	195.53	176.47	1.77E-07	1.53E-02	6.71E+01		.67E-03	24.84	8.41E-08	7.26E-03	3.18E+01	2.69E-03	11.78
4/11/2015 4/12/2015	305 244	122.28 60.12	182.72 183.88	1.45E-07 1.16E-07	1.26E-02 1.00E-02	5.50E+01 4.40E+01		.65E-03	20.36 16.29		7.52E-03 7.57E-03		2.79E-03 2.80E-03	12.20 12.28
4/13/2015	214	31.3	182.7	1.02E-07	8.81E-03	3.86E+01		.26E-03	14.29	8.70E-08	7.52E-03		2.79E-03	12.20
4/14/2015	198	17.55	180.45	9.43E-08	8.15E-03	3.57E+01		.02E-03	13.22		7.43E-03		2.75E-03	12.05
4/15/2015 4/16/2015	181 166	3.85 0	177.15 166	8.62E-08 7.91E-08	7.45E-03 6.83E-03	3.26E+01 2.99E+01		76E-03	12.08 11.08	8.44E-08 7.91E-08	7.29E-03 6.83E-03	2.99E+01	2.70E-03 2.53E-03	11.83 11.08
4/17/2015	173	9.56	163.44	8.24E-08	7.12E-03	3.12E+01		.64E-03	11.55	7.79E-08	6.73E-03	2.95E+01	2.49E-03	10.91
4/18/2015	165	4.47	160.53	7.86E-08	6.79E-03	2.97E+01		.52E-03	11.02	7.65E-08		2.89E+01	2.45E-03	10.72
4/19/2015	151 380	0 214.83	151 165.17	7.19E-08 1.81E-07	6.21E-03 1.56E-02	2.72E+01 6.85E+01		.30E-03	10.08 25.37	7.19E-08 7.87E-08	6.21E-03 6.80E-03	2.72E+01 2.98E+01	2.30E-03 2.52E-03	10.08 11.03
4/21/2015	684	483.46	200.54	3.26E-07	2.82E-02	1.23E+02	1	04E-02	45.67	9.55E-08		3.62E+01	3.06E-03	13.39
4/22/2015	358	149.51	208.49	1.71E-07	1.47E-02	6.45E+01		.46E-03	23.90	9.93E-08		3.76E+01	3.18E-03	13.92
4/23/2015 4/24/2015	279 228	69.15 20.69	209.85 207.31	1.33E-07 1.09E-07	1.15E-02 9.38E-03	5.03E+01 4.11E+01		.25E-03	18.63 15.22	1.00E-07 9.88E-08		3.78E+01 3.74E+01	3.20E-03 3.16E-03	14.01 13.84
4/25/2015	204	0.77	203.23	9.72E-08	8.40E-03	3.68E+01		.11E-03	13.62	9.68E-08	8.36E-03	3.66E+01	3.10E-03	13.57
4/26/2015	185	0	185	8.81E-08	7.61E-03	3.34E+01			12.35	8.81E-08		3.34E+01	2.82E-03	12.35
4/27/2015 4/28/2015	175 164	0 0	175 164	8.34E-08 7.81E-08	7.20E-03 6.75E-03	3.15E+01 2.96E+01		.67E-03	11.68 10.95	8.34E-08 7.81E-08		3.15E+01 2.96E+01	2.67E-03 2.50E-03	11.68 10.95
4/29/2015	150	0	150	7.15E-08	6.17E-03	2.70E+01		.29E-03	10.02	7.15E-08		2.70E+01	2.29E-03	10.02
4/30/2015	140	0	140	6.67E-08	5.76E-03	2.52E+01		.13E-03	9.35	6.67E-08			2.13E-03	9.35
5/1/2015 5/2/2015	130 124	0 0	130 124	6.19E-08 5.91E-08	5.35E-03 5.10E-03	2.34E+01 2.24E+01		98E-03 89E-03	8.68 8.28	6.19E-08 5.91E-08		2.34E+01 2.24E+01	1.98E-03 1.89E-03	8.68 8.28
5/3/2015	114	0	114	5.43E-08	4.69E-03	2.06E+01		74E-03	7.61	5.43E-08			1.74E-03	7.61
5/4/2015	105	0	105	5.00E-08	4.32E-03	1.89E+01		60E-03	7.01	5.00E-08			1.60E-03	7.01
5/5/2015 5/6/2015	100 95	0 0	100 95	4.76E-08 4.53E-08	4.12E-03 3.91E-03	1.80E+01 1.71E+01		52E-03 45E-03	6.68 6.34	4.76E-08 4.53E-08		1.80E+01 1.71E+01		6.68 6.34
5/7/2015	90	0	90	4.33E-08 4.29E-08	3.70E-03	1.62E+01			6.01	4.29E-08		1.62E+01		6.01
5/8/2015	84	0	84	4.00E-08	3.46E-03	1.51E+01		28E-03	5.61	4.00E-08		1.51E+01		5.61
5/9/2015 5/10/2015	81 79	0 0	81 79	3.86E-08 3.76E-08	3.33E-03 3.25E-03	1.46E+01 1.42E+01		23E-03 20E-03	5.41 5.27			1.46E+01 1.42E+01		5.41 5.27
5/11/2015	79	0	79	3.43E-08	2.96E-03	1.30E+01		10E-03	4.81	3.43E-08		1.30E+01		4.81
5/12/2015	67	0	67	3.19E-08	2.76E-03	1.21E+01	1	02E-03	4.47	3.19E-08			1.02E-03	4.47
5/13/2015	59	0	59	2.81E-08	2.43E-03	1.06E+01		8.99E-04	3.94	2.81E-08		1.06E+01 1.01E+01	8.99E-04 8.54E-04	3.94 3.74
5/14/2015 5/15/2015	56 58	0 2.89	56 55.11	2.67E-08 2.76E-08	2.30E-03 2.39E-03	1.01E+01 1.05E+01		8.54E-04 8.84E-04	3.74 3.87	2.67E-08 2.63E-08		9.93E+00	8.34E-04 8.40E-04	3.68
5/16/2015	63	8.33	54.67	3.00E-08	2.59E-03	1.14E+01		.60E-04	4.21	2.60E-08		9.86E+00	8.33E-04	3.65
5/17/2015	64	9.65	54.35	3.05E-08	2.63E-03	1.15E+01		.76E-04	4.27	2.59E-08		9.80E+00	8.28E-04	3.63
5/18/2015 5/19/2015	55 55	1.61 2.48	53.39 52.52	2.62E-08 2.62E-08	2.26E-03 2.26E-03	9.91E+00 9.91E+00		3.38E-04 3.38E-04	3.67 3.67	2.54E-08 2.50E-08		9.62E+00 9.47E+00	8.14E-04 8.01E-04	3.56 3.51
5/20/2015	80	26.41	53.59	3.81E-08	3.29E-03	1.44E+01		22E-03	5.34	2.55E-08		9.66E+00	8.17E-04	3.58
5/21/2015	58	5.08	52.92	2.76E-08	2.39E-03	1.05E+01		3.84E-04	3.87	2.52E-08		9.54E+00	8.07E-04	3.53
5/22/2015 5/23/2015	49 44	0 0	49 44	2.33E-08 2.10E-08	2.02E-03 1.81E-03	8.83E+00 7.93E+00		.47E-04	3.27 2.94	2.33E-08 2.10E-08		8.83E+00 7.93E+00	7.47E-04 6.71E-04	3.27 2.94
5/24/2015	40	0	40	1.91E-08	1.65E-03	7.21E+00		5.10E-04	2.67	1.91E-08		7.21E+00	6.10E-04	2.67
5/25/2015	39	0	39	1.86E-08	1.61E-03	7.03E+00		.94E-04	2.60	1.86E-08		7.03E+00	5.94E-04	2.60
5/26/2015 5/27/2015	35 35	0 0.65	35 34.35	1.67E-08 1.67E-08	1.44E-03 1.44E-03	6.31E+00 6.31E+00		5.34E-04 5.34E-04	2.34 2.34	1.67E-08 1.64E-08		6.31E+00 6.19E+00	5.34E-04 5.24E-04	2.34 2.29
5/28/2015	46	11.42	34.55 34.58	Providence (State of the	1.44E-03 1.89E-03	8.29E+00		7.01E-04	3.07	1.65E-08	1.42E-03	6.23E+00	5.27E-04	2.31
5/29/2015	39	4.73	34.27	1.86E-08	1.61E-03	7.03E+00		5.94E-04	2.60		1.41E-03		5.22E-04	2.29
5/30/2015	32	0	32	1.52E-08	1.32E-03	5.77E+00		.88E-04	2.14 2.94	1.52E-08 1.54E-08		5.77E+00 5.82E+00	4.88E-04 4.92E-04	2.14 2.16
5/31/2015 6/1/2015	44 176	11.7 133.66	32.3 42.34	2.10E-08 8.38E-08	1.81E-03 7.24E-03	7.93E+00 3.17E+01		5.71E-04 2.68E-03	2.94 11.75	1.54E-08 2.02E-08		7.63E+00	4.92L-04 6.45E-04	2.83
6/2/2015	360	294.91	65.09	1.71E-07	1.48E-02			5.49E-03	24.04	3.10E-08		1.17E+01	9.92E-04	4.35
6/3/2015	152	81.68	70.32	7.24E-08	6.26E-03	2.74E+01		2.32E-03	10.15	3.35E-08		1.27E+01 1.28E+01	1.07E-03 1.08E-03	4.70 4.73
6/4/2015 6/5/2015	95 73	24.15 3.31	70.85 69.69	4.53E-08 3.48E-08	3.91E-03 3.00E-03	1.71E+01 1.32E+01		45E-03 11E-03	6.34 4.87	3.38E-08 3.32E-08		1.28E+01 1.26E+01	1.08E-03	4.75
6/6/2015	62	0	62	2.95E-08	2.55E-03	1.12E+01).45E-04	4.14	2.95E-08		1.12E+01	9.45E-04	4.14
6/7/2015	52	0	52	2.48E-08	2.14E-03	9.37E+00		7.93E-04	3.47	2.48E-08		9.37E+00	7.93E-04	3.47
6/8/2015 6/9/2015	48 51	0 3.67	48 47.33	2.29E-08 2.43E-08	1.98E-03 2.10E-03			7.32E-04 7.77E-04	3.20 3.41	2.29E-08 2.25E-08		8.65E+00 8.53E+00	7.32E-04 7.21E-04	3.20 3.16
6/10/2015	49	2.42	47.55					7.47E-04	3.27	2.22E-08	1.92E-03	8.40E+00	7.10E-04	3.11
6/11/2015	40	0	40	1.91E-08	1.65E-03	7.21E+00		5.10E-04	2.67	1.91E-08		7.21E+00	6.10E-04	2.67
6/12/2015 6/13/2015	37 34	0 0	37 34	1.76E-08 1.62E-08				5.64E-04 5.18E-04	2.47 2.27	1.76E-08 1.62E-08		6.67E+00 6.13E+00	5.64E-04 5.18E-04	2.47 2.27
6/13/2015 6/14/2015	34 30	0	34 30	1.62E-08 1.43E-08				1.57E-04	2.00	1.43E-08	1.23E-03	5.41E+00	4.57E-04	2.00
6/15/2015	135	97.78	37.22	6.43E-08	5.56E-03			2.06E-03	9.01	1.77E-08		6.71E+00	5.67E-04	2.49 2.75
6/16/2015	100	58.82	41.18					L.52E-03 L.16E-03	6.68 5.07	1.96E-08 2.05E-08		7.42E+00 7.75E+00	6.28E-04 6.55E-04	2.75 2.87
6/17/2015 6/18/2015	76 53	33 10.06	43 42.94	3.62E-08 2.52E-08				3.08E-04	3.54	2.05E-08		7.74E+00	6.55E-04	2.87
6/19/2015	45	2.7	42.3	2.14E-08	1.85E-03	8.11E+00	6	5.86E-04	3.00	2.02E-08		7.63E+00	6.45E-04	2.82
6/20/2015	40	0	40	1.91E-08				5.10E-04 1.08E-03	2.67 4.74	1.91E-08 1.98E-08		7.21E+00 7.49E+00	6.10E-04 6.34E-04	2.67 2.77
6/21/2015 6/22/2015	71 86	29.44 41.92	41.56 44.08	1				1.31E-03	4.74 5.74			7.95E+00		2.94
6/23/2015	60	15.56	44.44			1.08E+01		9.15E-04	4.01	2.12E-08		8.01E+00	6.77E-04	2.97
6/24/2015	56	11.53	44.47	24 Control				8.54E-04 5.10E-04	3.74 2.67	2.12E-08		8.02E+00 7.21E+00	6.78E-04 6.10E-04	2.97 2.67
6/25/2015 6/26/2015	40 35	0	40 35					5.34E-04	2.34			6.31E+00	5.34E-04	2.34
6/27/2015	32	0	32					4.88E-04	2.14	1.52E-08	1.32E-03	5.77E+00	4.88E-04	2.14
6/28/2015	74	39.48	34.52	1				1.13E-03	4.94	1.64E-08		6.22E+00 6.51E+00	5.26E-04 5.51E-04	2.30 2.41
6/29/2015	65 49	28.86 12.58	36.14 36.42					9.91E-04 7.47E-04	4.34 3.27	1.72E-08 1.73E-08		6.51E+00 6.57E+00	5.55E-04 5.55E-04	2.41
6/30/2015 7/1/2015	49 87	12.58 47.51	36.42 39.49				. :	1.33E-03	5.81	1.88E-08	1.63E-03	7.12E+00	6.02E-04	2.64
7/2/2015	64	23.42	40.58	3.05E-08	2.63E-03	1.15E+01		9.76E-04	4.27			7.32E+00 7.24E+00	6.19E-04 6.12E-04	2.71 2.68
7/3/2015	45 26	4.85	40.15					5.86E-04 5.49E-04	3.00 2.40	1.91E-08 1.71E-08		7.24E+00 6.49E+00	6.12E-04 5.49E-04	2.68
7/4/2015 7/5/2015	36 33	0 0	36 33	the Contraction of the second second				5.49E-04 5.03E-04	2.40	1.57E-08	1.36E-03	5.95E+00	5.03E-04	2.20
7/6/2015	30	0	30	1.43E-08	1.23E-03	5.41E+00) 4	4.57E-04	2.00			5.41E+00		2.00
7/7/2015	78	45	33					1.19E-03 2.06E-03	5.21 9.01	1.57E-08 1.90E-08		5.95E+00 7.20E+00	5.03E-04 6.09E-04	2.20 2.67
7/8/2015 7/9/2015	135 64	95.06 23.01	39.94 40.99	8				9.76E-04	4.27	1.95E-08	1.69E-03	7.39E+00	6.25E-04	2.74
7/10/2015	52	10.96	41.04	2.48E-08	2.14E-03	9.37E+00) '	7.93E-04	3.47	1.95E-08		7.40E+00	6.26E-04	2.74
7/11/2015	40	0	40	8				6.10E-04 5.34E-04	2.67 2.34	1.91E-08 1.67E-08		7.21E+00 6.31E+00	6.10E-04 5.34E-04	2.67 2.34
7/12/2015 7/13/2015	35 29	0 0	35 29					4.42E-04	1.94	1.38E-08	1.19E-03	5.23E+00	4.42E-04	1.94
7/14/2015	28	0	28	Contraction of the second) .	4.27E-04	1.87	1.33E-08	1.15E-03	5.05E+00	4.27E-04	1.87


Basin Area sqmi
Basin Area sqft
Day

qmi		75.3													
qft		2.1E+09			Flow						Baseflow				
		Flow (cfs	Direct Run(Ba	ase Flow	Recharge (ft/s)	Recharge ft/d)	Recharge (in/yr)	ft/d	1	in/yr	Recharge (i I	Recharge (1	Recharge (i	ft/d i	n/yr
	7/15/2015	83	51.44	31.56	3.95E-08	3.42E-03	1.50E+01		1.27E-03	5.54	1.50E-08	1.30E-03	5.69E+00	4.81E-04	2.11
	7/16/2015	62	28.77	33.23	2.95E-08	2.55E-03	1.12E+01		9.45E-04	4.14	1.58E-08	1.37E-03	5.99E+00	5.07E-04	2.22
	7/17/2015	35	2.26	32.74	1.67E-08	1.44E-03	6.31E+00		5.34E-04	2.34	1.56E-08	1.35E-03	5.90E+00	4.99E-04	2.19
	7/18/2015	32	0	32	1.52E-08	1.32E-03	5.77E+00		4.88E-04	2.14	1.52E-08	1.32E-03	5.77E+00	4.88E-04	2.14
1	7/19/2015	30	0	30	1.43E-08	1.23E-03	5.41E+00		4.57E-04	2.00	1.43E-08	1.23E-03	5.41E+00	4.57E-04	2.00
	7/20/2015	27	0	27	1.29E-08	1.11E-03	4.87E+00		4.12E-04	1.80		1.11E-03		4.12E-04	1.80
	7/21/2015	27	0.5	26.5	1.29E-08	1.11E-03	4.87E+00		4.12E-04	1.80	1.26E-08	1.09E-03	4.78E+00	4.04E-04	1.77
	7/22/2015	25	0	25	1.19E-08	1.03E-03	4.51E+00		3.81E-04	1.67	1.19E-08	1.03E-03		3.81E-04	1.67
	7/23/2015	21	0	21	1.00E-08	8.64E-04	3.79E+00		3.20E-04	1.40	1.00E-08	8.64E-04		3.20E-04	1.40
	7/24/2015	20	0	20	9.53E-09	8.23E-04	3.61E+00		3.05E-04	1.34	9.53E-09	8.23E-04		3.05E-04	1.34
	7/25/2015	17	0	17	8.10E-09	7.00E-04	3.06E+00		2.59E-04	1.14	8.10E-09	7.00E-04		2.59E-04	1.14
	7/26/2015	22	4.94	17.06	1.05E-08	9.05E-04	3.97E+00		3.35E-04	1.47	8.13E-09	7.02E-04		2.60E-04	1.14
	7/27/2015	21	3.97	17.03	1.00E-08	8.64E-04	3.79E+00		3.20E-04	1.40	8.11E-09	7.01E-04		2.60E-04	1.14
	7/28/2015	18	1.21	16.79	8.57E-09	7.41E-04	3.24E+00		2.74E-04	1.40	8.00E-09	6.91E-04		2.56E-04	1.12
	7/29/2015	16	0	16.75	7.62E-09	6.59E-04	2.88E+00		2.44E-04	1.20	7.62E-09		2.88E+00	2.44E-04	1.07
	7/30/2015	29	12.33	16.67	1.38E-08	1.19E-03	5.23E+00		4.42E-04	1.94	7.94E-09	6.86E-04		2.54E-04	1.11
	7/31/2015	42	23.77	18.23	2.00E-08	1.73E-03	7.57E+00		6.40E-04	2.80	8.68E-09	7.50E-04		2.78E-04	1.22
	8/1/2015	24	5.68	18.32	1.14E-08	9.88E-04	4.33E+00		3.66E-04	1.60	8.73E-09	7.54E-04		2.79E-04	1.22
	8/2/2015	18	0.04	17.96	8.57E-09	7.41E-04	4.33E+00 3.24E+00		2.74E-04	1.00	8.56E-09	7.39E-04		2.79E-04 2.74E-04	1.22
	8/2/2015	16	0.04	17.90	7.62E-09	6.59E-04	2.88E+00		2.74E-04 2.44E-04	1.20	7.62E-09	6.59E-04		2.74E-04 2.44E-04	1.20
	8/4/2015	16	0.3	15.7	7.62E-09	6.59E-04	2.88E+00		2.44E-04 2.44E-04	1.07	7.48E-09	6.46E-04		2.39E-04	1.07
	8/5/2015		0.5										2.83E+00 2.52E+00	2.39E-04 2.13E-04	
	8/6/2015	14	0	14 13	6.67E-09	5.76E-04	2.52E+00		2.13E-04	0.93	6.67E-09	5.35E-04			0.93
	8/6/2015 8/7/2015	13			6.19E-09	5.35E-04	2.34E+00		1.98E-04	0.87	6.19E-09			1.98E-04	0.87
		12	0	12	5.72E-09	4.94E-04	2.16E+00		1.83E-04	0.80	5.72E-09		2.16E+00	1.83E-04	0.80
	8/8/2015	11	0	11	5.24E-09	4.53E-04	1.98E+00		1.68E-04	0.73	5.24E-09		1.98E+00		0.73
	8/9/2015	10	0	10	4.76E-09	4.12E-04	1.80E+00		1.52E-04	0.67	4.76E-09		1.80E+00		0.67
	8/10/2015	10	0.19	9.81	4.76E-09	4.12E-04	1.80E+00		1.52E-04	0.67	4.67E-09		1.77E+00	1.50E-04	0.65
	8/11/2015	40	28.13	11.87	1.91E-08	1.65E-03	7.21E+00		6.10E-04	2.67	5.65E-09		2.14E+00		0.79
	8/12/2015	37	23.49	13.51	1.76E-08	1.52E-03	6.67E+00		5.64E-04	2.47	6.44E-09		2.44E+00	2.06E-04	0.90
	8/13/2015	21	7.18	13.82	1.00E-08	8.64E-04	3.79E+00		3.20E-04	1.40	6.58E-09	5.69E-04		2.11E-04	0.92
	8/14/2015	16	2.28	13.72	7.62E-09	6.59E-04	2.88E+00		2.44E-04	1.07	6.54E-09		2.47E+00		0.92
	8/15/2015	13	0	13	6.19E-09	5.35E-04	2.34E+00		1.98E-04	0.87	6.19E-09		2.34E+00		0.87
	8/16/2015	12	0	12	5.72E-09	4.94E-04	2.16E+00		1.83E-04	0.80	5.72E-09		2.16E+00		0.80
	8/17/2015	11	0	11	5.24E-09	4.53E-04	1.98E+00		1.68E-04	0.73	5.24E-09	4.53E-04		1.68E-04	0.73
	8/18/2015	10	0	10	4.76E-09	4.12E-04	1.80E+00		1.52E-04	0.67	4.76E-09	4.12E-04	1.80E+00	1.52E-04	0.67
	8/19/2015	9.4	0	9.4	4.48E-09	3.87E-04	1.69E+00		1.43E-04	0.63	4.48E-09	3.87E-04	1.69E+00	1.43E-04	0.63
	8/20/2015	8.9	0	8.9	4.24E-09	3.66E-04	1.60E+00		1.36E-04	0.59	4.24E-09		1.60E+00		0.59
	8/21/2015	10	1.18	8.82	4.76E-09	4.12E-04	1.80E+00		1.52E-04	0.67	4.20E-09	3.63E-04	1.59E+00	1.34E-04	0.59
	8/22/2015	9.7	0.98	8.72	4.62E-09	3.99E-04	1.75E+00		1.48E-04	0.65	4.15E-09	3.59E-04	1.57E+00	1.33E-04	0.58
	8/23/2015	8.9	0.33	8.57	4.24E-09	3.66E-04	1.60E+00		1.36E-04	0.59			1.54E+00		0.57
	8/24/2015	8.1	0	8.1	3.86E-09	3.33E-04	1.46E+00		1.23E-04	0.54	3.86E-09	3.33E-04	1.46E+00	1.23E-04	0.54
	8/25/2015	7.9	0	7.9	3.76E-09	3.25E-04	1.42E+00		1.20E-04	0.53	3.76E-09	3.25E-04	1.42E+00	1.20E-04	0.53
	8/26/2015	7.9	0.15	7.75	3.76E-09	3.25E-04	1.42E+00		1.20E-04	0.53	3.69E-09	3.19E-04	1.40E+00	1.18E-04	0.52
	8/27/2015	8.9	1.2	7.7	4.24E-09	3.66E-04	1.60E+00		1.36E-04	0.59	3.67E-09	3.17E-04	1.39E+00	1.17E-04	0.51
	8/28/2015	7.4	0	7.4	3.53E-09	3.05E-04	1.33E+00		1.13E-04	0.49	3.53E-09	3.05E-04	1.33E+00	1.13E-04	0.49
	8/29/2015	6.6	0	6.6	3.14E-09	2.72E-04	1.19E+00		1.01E-04	0.44	3.14E-09	2.72E-04	1.19E+00	1.01E-04	0.44
	8/30/2015	6.2	0	6.2	2.95E-09	2.55E-04	1.12E+00		9.45E-05	0.41	2.95E-09	2.55E-04	1.12E+00	9.45E-05	0.41
	8/31/2015	6	0	6	2.86E-09	2.47E-04	1.08E+00		9.15E-05	0.40	2.86E-09		1.08E+00		0.40
	9/1/2015	5.6	0	5.6	2.67E-09	2.30E-04	1.01E+00		8.54E-05	0.37	2.67E-09		1.01E+00		0.37
	9/2/2015	5.3	0	5.3	2.52E-09	2.18E-04	9.55E-01		8.08E-05	0.35	2.52E-09	2.18E-04	9.55E-01		0.35
	9/3/2015	5.1	0	5.1	2.43E-09	2.10E-04	9.19E-01		7.77E-05	0.34	2.43E-09	2.10E-04	9.19E-01		0.34
	9/4/2015	4.6	0	4.6	2.19E-09	1.89E-04	8.29E-01		7.01E-05	0.31	2.19E-09	1.89E-04	8.29E-01		0.31
	9/5/2015	4.6	0.09	4.51	2.19E-09	1.89E-04	8.29E-01 8.29E-01		7.01E-05	0.31	2.15E-09	1.86E-04		6.87E-05	0.30
	9/6/2015	4.0	0.05	4.51	1.91E-09	1.65E-04	7.21E-01		6.10E-05	0.27	1.91E-09	1.65E-04	7.21E-01		0.27
	9/7/2015	3.9	0	3.9	1.86E-09	1.61E-04	7.03E-01		5.94E-05	0.27		1.61E-04	7.03E-01		0.26
	9/7/2015 9/8/2015	3.9	0	3.8	1.80E-09	1.56E-04	6.85E-01		5.79E-05	0.20		1.56E-04		5.79E-05	0.25
	9/8/2015 9/9/2015	3.8	0	3.8	1.81E-09 1.76E-09	1.52E-04	6.67E-01		5.64E-05	0.25		1.52E-04		5.64E-05	0.25
	9/10/2015	5.5	1.74	3.76	2.62E-09	2.26E-04	9.91E-01		8.38E-05	0.23	1.79E-09	1.55E-04		5.73E-05	0.25
					Lange of Company and the		1.19E+00		1.01E-04	0.44	1.86E-09	1.61E-04	7.05E-01		0.26
	9/11/2015	6.6	2.69	3.91	3.14E-09	2.72E-04				100 March 100	1.91E-09	1.65E-04	7.25E-01		0.20
	9/12/2015	6.4	2.38	4.02	3.05E-09	2.63E-04	1.15E+00		9.76E-05	0.43		1.85E-04 1.71E-04	7.48E-01		0.27
	9/13/2015	6.8	2.65	4.15	3.24E-09	2.80E-04	1.23E+00		1.04E-04	0.45	1.98E-09		7.48E-01 7.72E-01		0.28
	9/14/2015	7	2.72	4.28	3.33E-09	2.88E-04	1.26E+00		1.07E-04	0.47		1.76E-04	7.72E-01 7.86E-01		0.29
	9/15/2015	6.4	2.04	4.36	3.05E-09	2.63E-04	1.15E+00		9.76E-05	0.43	2.08E-09	1.79E-04			
	9/16/2015	5.4	1.04	4.36	2.57E-09	2.22E-04	9.73E-01		8.23E-05	0.36	2.08E-09	1.79E-04	7.86E-01		0.29
	9/17/2015	4.8	0.49	4.31	2.29E-09	1.98E-04	8.65E-01		7.32E-05	0.32	2.05E-09	1.77E-04	7.77E-01		0.29
	9/18/2015	4.5	0.26	4.24	2.14E-09	1.85E-04	8.11E-01		6.86E-05	0.30		1.75E-04	7.64E-01		0.28
	9/19/2015	4.4	0.22	4.18	2.10E-09	1.81E-04	7.93E-01		6.71E-05	0.29	1.99E-09	1.72E-04	7.54E-01		0.28
	9/20/2015	4.4	0.28	4.12	2.10E-09	1.81E-04	7.93E-01		6.71E-05	0.29		1.70E-04	7.43E-01		0.28
	9/21/2015	3.8	0	3.8	1.81E-09	1.56E-04	6.85E-01		5.79E-05	0.25		1.56E-04		5.79E-05	0.25
	9/22/2015	4.1	0.35	3.75	1.95E-09	1.69E-04	7.39E-01		6.25E-05	0.27	1.79E-09	1.54E-04		5.72E-05	0.25
	9/23/2015	3.8	0.11	3.69	1.81E-09	1.56E-04	6.85E-01		5.79E-05	0.25		1.52E-04		5.62E-05	0.25
	9/24/2015	3.9	0.27	3.63	1.86E-09	1.61E-04	7.03E-01		5.94E-05	0.26	1.73E-09	1.49E-04		5.53E-05	0.24
	9/25/2015	4.2	0.59	3.61	2.00E-09	1.73E-04	7.57E-01		6.40E-05	0.28		1.49E-04		5.50E-05	0.24
	9/26/2015	4.3	0.71	3.59	2.05E-09	1.77E-04	7.75E-01		6.55E-05	0.29	1.71E-09	1.48E-04		5.47E-05	0.24
	9/27/2015	4	0.44	3.56	1.91E-09	1.65E-04	7.21E-01		6.10E-05	0.27		1.47E-04	6.42E-01	5.43E-05	0.24
	9/28/2015	4.3	0.75	3.55	2.05E-09	1.77E-04			6.55E-05	0.29		1.46E-04	6.40E-01	5.41E-05	0.24
	9/29/2015	4.8	1.23	3.57	2.29E-09	1.98E-04			7.32E-05	0.32				5.44E-05	0.24
	9/30/2015	29	23.61	5.39					4.42E-04	1.94	2.57E-09	2.22E-04	9.72E-01	8.22E-05	0.36
	0,00,2010	23	-0.01	0.00											

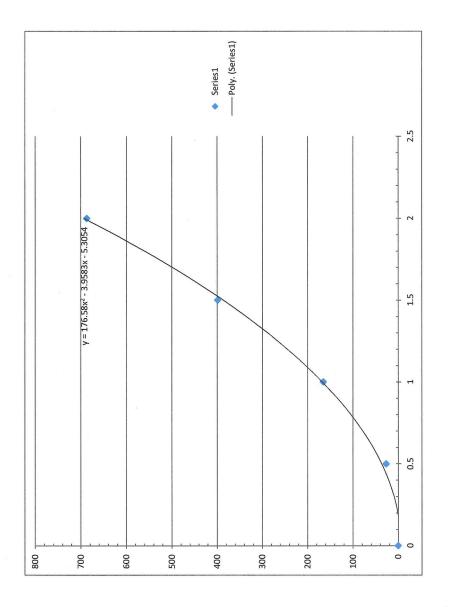
APPENDIX VI

STORMWATER RECHARGE ESTIMATE

SYSTEM LAYOUT

SYSTEM ELEVATIONS

Lutheran Home of Southbury Stormwater System Elevations Oct. 14, 2015 R Baglini - BETA


	Stuart / Comore		Plan L-3 (PMA Plans) Elevations													BETA Adjusted Elevations																	
Structure ID	Stuart/Somers Elevations Rim	Rim	NE	In/Ou	t N	IW I	In/Out	SE	In/C	Out	SW	In/Out	#1 In		#2 In	#3 In	#1 Out	Comments	Delta	Differential	Rim	NE	In/Out	NW	In/Out	SE	In/Out	SW	In/Out	#1 In	#2 In	#3 In	Out
DMH-1	256.54	94.40	÷	-		-	÷	-	-		-	-	87.00		-	-	86.90		162.14	-0.13	256.54	N		9						249.27			249.17
DMH-2	259.38	97.10	-	-	3	-	-	-	· · ·		-	-	88.67		-	-	88.67	In=Out	162.28	0.01	259.38	1		1						250.94			250.94
DMH-3	260.90	98.90	-	-	la Ist	-	-	95.40	Ir	i	-	-	89.40		-	-	88.67	In=East	162.00	-0.27	260.90					257.67				251.67			250.94
DMH-4		104.10	-	- 1		-	-	100.60) Ir	1	-	-	100.60) .	- 1	-	98.05	In=East	-	#VALUE!	266.37	#VALUE!	#VALUE!	#VALUE!	#VALUE!	262.87	#VALUE!	#VALUE!	#VALUE!	262.87	#VALUE!	#VALUE!	260.32
DMH-5		108.75	-			- 11	-		-		-	-	104.56	; .	-	-	101.95		#VALUE1		271.02	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	266.83	#VALUE!	#VALUE!	264.22
DMH-6	275.78	113.50	105.00	?	106	6.00	Out	106.80) ?	1	06.80	?			-	-	-	Many pipes	162.28	0.01	275.78	267.27		268.27		269.07		269.07					
DMH-7	276.70	114.40	106.00	?	107	7.00	?	-	-		-	-	-	2	-	-	-		162.30	0.03	276.70	268.27		269.27									
DMH-8	272.18	109.80	105.00	?	105	5.00	?	106.80) ?	1	05.00	?	-		-	-	-	Many pipes	162.38	0.11	272.18	267.27		267.27		269.07		267.27					
DMH-9	272.83	110.60	106.00	?	107	7.00	?	106.00) ?	10	06.00	?	-		-	-	-	Many pipes	162.23	-0.04	272.83	268.27		269.27		268.27		268.27	v	- 1			
DMH-10	270.81	108.55	105.00	?	105	5.00	?	106.80) ?	10	05.00	?	-		-	-	-	Many pipes	162.26	-0.01	270.81	267.27		267.27		269.07		267.27	2				R I
DMH-11	271.66	109.30	106.00	?	107	7.00	?	106.00) ?	10	06.00	?	-		-	-	-	Many pipes	162.36	0.09	271.66	268.27		269.27		268.27		268.27				- 1, F	
DMH-12	270.60	108.47	-	-	5	-	-	-	-	10	05.55	-	-	2	-	-	105.72	Out=North	162.13	-0.14	270.60	=				1		267.82	1	1		1	267.99
DMH-13	259.65	97.40	-	-		-	-	-	-		-	-	93.95		-	-	92.80	In=8", Out=15"	162.25	-0.02	259.65			- 1			-	-		256.22			255.07
DMH-14	260.27	98.00	-	-		-	-	-	-		-	-	94.45		<u>1</u>	-	94.35		162.27	0.00	260.27			11		_				256.72	A		256.62
DMH-15		97.80	-	-		-	-	-	-		-	-	90.30	93	8.60	-	90.10	93.6inv pipe is 4" dia.	#VALUE!		260.07	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	252.57	255.87		252.37
DMH-16		97.80	-	-		-	-	-	-		-	1.4	92.20	91	L.15	-	91.05	In=(S)10", In=(N)12", Out=12"	#VALUE!	#VALUE!	260.07	#VALUE!	#VALUE!	#VALUE1	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	254.47	253.42	#VALUE!	253.32
DMH-17		97.40	-	-		-	-	-	-		-	-	92.05		-	-	91.95		#VALUE!	#VALUE!	259.67	#VALUE!	#VALUE!	#VALUE!	#VALUE1	#VALUE!	#VALUE!	#VALUE!	#VALUE!	254.32	#VALUE!		254.22
DMH-18	259.58	97.00	-	-	0	-	-	-	-	2	-	-	93.00		-	-	92.80	-	162.58	0.31	259.58		1			ĝ.				255.27			255.07
DMH-19	262.37	-	-	-	2	-	-	-	-		-	-	-		-	-	-	-													-		
DMH-20	-	99.50	-	-		-	-	-	-		-	-	-		-	-	92.85		#VALUE!		261.77	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE1	#VALUE!	#VALUE!	255.12
Flare End		104.50	-	-		-	-	-	-		-	-	-		-	-	-	Verify if Exists	#VALUE!		266.77	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Fdn.Dr.Sump	-	-	-	-		-	-	-	-		-	-	-		-	-	96.40	2x2x2 Sump (Newer Bldg)	#VALUE!		#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE1	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUEI	#VALUE!	#VALUE!	258.67
Interior Fdn. Drain		-	-	-		-	-	-	-		-	-	97.00		-	44	-	Per Dwg. L-5	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE1	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	259.27	#VALUE!	#VALUE!	#VALUE!
Exterior Fdn. Drain	-	-	-	-		-	-	-	-		-	-	96.50	95	5.57	-	95.10	Per Dwg. L-5	#VALUE!		#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE1	#VALUE!	#VALUE!	#VALUE!	#VALUE!	258.77	257.84	#VALUE!	257.37
CB-1	257.02	94.60	· -	-		-	-	-	-	0	-	-	-		-	2	-	Need field measure	162.42	0.15	257.02					- E.		1 e a		1			20.00
CB-2	259.05	96.65	-	-		-	-	-	-		-	-	-		-	-	88.80	-	162.40	0.13	259.05									*05 III			251.07
CB-3	259.15	97.00	-	-		-	-	-	-	8	-	-	-		-	-	93.50	-	162.15	-0.12	259.15										1		255.77
CB-4	267.19	104.90	-	-		-	-	-	-	0	-	-	-	э	-	-	101.05	-	162.29	0.02	267.19										1.42	U	263.32
CB-5	273.02	110.85	-	-		-	-	-	-	8	-	-	-	2	-	-	105.55	-	162.17	-0.10	273.02						1			-			267.82
CB-6	276.66	114.45	-	-		-	-	-		6	-	-	-		-	-	106.15	-	162.21	-0.06	276.66)		1.1					268.42
CB-7	271.36	109.10	-	-		-		-	-	<i>6</i>	-	-	-	4	-	<u>~</u>	105.15	-	162.26	-0.01	271.36	27											267.42
CB-8	273.76	111.60	-	-		-	-	-	-		-	-	-	3	-		106.15	-	162.16	-0.11	273.76				-		1			100		10.11	268.42
CB-9	270.30	108.10	105.15	?		-	-	-	-	1	05.15	?	-		-	-	-		162.20	-0.07	270.30	267.42						267.42				1.1.1	
CB-10	100 Content 100	96.80	-	-		-	-	-	-		-	-	91.60		- 24	-	91.45	In=(N)10", Out=(S)12"	#VALUE!	#VALUE!	259.07	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	253.87	#VALUE!	#VALUE!	253.72
CB-11	1.000	96.80	-	-		-	-	-	-		-	-	-		-	-	93.45		#VALUE!		259.07	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	255.72
Rim-1	-	-	-	-		-	-	-	-		-	-	-		-	-	-		-	#VALUEI	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE1	#VALUE!	#VALUE!	#VALUEI
Rim-2		96.20	-	-		-	-	-			-	-	-		-*	-			-	#VALUE!	258.47	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE1	#VALUE!	#VALUE!	#VALUE!	#VALUE1	#VALUE!	#VALUE!	#VALUE!
Rim-3	260.45	98.20	-	-		-	-	-	-		-	-	-		-	-	-	-	162.25	-0.02	260.45									1, I			
Rim-4	275.81	113.55	-	-		-	-	-	-	i.	-	-	-	3	-	-	-	-	162.26	-0.01	275.81		E E					-					n.
Rim-5	276.92	114.60	1	18		=)	-	-	-		-	(E	-	1	-	-	-		162.32	0.05	276.92	2.5		41 11	1 a 11		· ·	-1 I.Z.	100 B 10		" (a	1 Sec. 11	
Rim-6	272.49	110.20	-	. 		-	-		-		-	-	-		-	-	-	-	162.29	0.02	272.49	·		15.00			1		i Para ta se	1. J. 1	$E_{\rm K} = -$	3. ¹ . 11. ¹ .	
Rim-7	-	111.00		-		-	-	-			-	-	-		-	-	1.0		#VALUE!	#VALUE!	273.27	#VALUEL	#VALUET	#VALUET	#VALUEL	#VALUET	#VALUE!	#VALUEL	#VALUET	#VALUET	#VALUEL	#VALUEL	#VALUE
Rim-8	272.02	109.50																-	162.52	0.25	272.02	11 2 18 1	2 1 2 1	18 - 11 H P				1		1. J. 1.	and the first		
Rim-9	272.51	110.20	-	-		H 2	-	-	-		-	-	-		-	-	-	-	162.31	0.04	272.51			L of W			2			-9 L			
Rim-10	270.92	108.77																-	162.15	-0.12	270.92								1			1.1.1.1.1	
Rim-11	271.83	109.50																	162.33	0.06	271.83							7 5 T	an de	- 1 I I	1		
Rim-12	271.05	108.77																-	162.28	0.01	271.05									1.1.1	and in the		
Rim-13		111.00									Vertilities and														-								-

Average Delta: 162.27

CHARTS

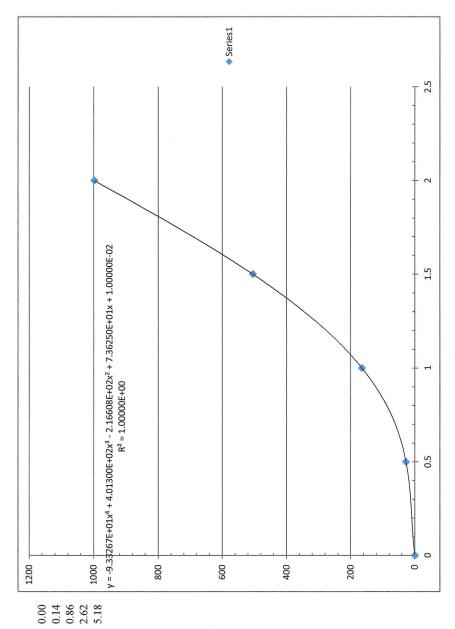
6	Gallerys SW		5.85	0.01	0.01	10.00	1.56	0.01	1.00	3.52	5.29	0.01	0.19	1.99	3.54	0.01
00	/s Gallerys Mid- G W		00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	00.00
7	Gallerys G NW		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9	Gallerys SE		00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	Gallerys Mid -E	cfd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	Gallerys NE		00.00	00.00	00.00	00.00	0.00	00.00	00.00	00.00	00.00	00.00	00.00	0.00	00.00	0.00
ß	Gallerys S-E		167.09	0.01	0.01	360.26	35.06	0.01	21.78	87.69	146.09	0.01	3.89	45.75	88.08	0.01
2	Gallerys s-w		32.65	0.01	0.01	109.05	3.90	0.01	2.23	12.81	26.69	0.01	0.36	5.42	12.89	0.01
1	Dry Well 0		62.25	0.01	0.01	121.88	14.24	0.01	8.94	34.34	55.12	0.01	1.62	18.44	34.49	0.01
		nch/day	0.11	0.00	0.00	0.23	0.02	0.00	0.01	0.06	0.09	0.00	0.00	0.03	0.06	0.00
		.=	91.00	2	ŝ	9	4	2	5	5	7	7	4	15	16	14
	4/1/2015	days	9.65	0	0	1.36	0.09	0	0.07	0.28	0.65	0	0.01	0.44	0.9	0
			1	ŝ	9	12	16	18	23	28	4	11	15	30	15	29
		Day	7	7	7	7	7	7	7	7	8	∞	∞	8	6	6
		Month	:+00 3.57E+00	00+	00+:	E-01	E-03	00+	E-03	E-02	E-02	00+	04E-03	E-02	E-02	00+
			0 1.00E+00	0 0.00E+00	0 0.00E+00	0 1.41E-0	12 9.33E-03	0 0.00E+00	2 7.25E-03	1 2.90E-02	1 6.74E-02	0 0.00E+0(H	1 4.56E-02	1 9.33E-02	0 0.00E+00
		Recharge	9.65E+00	0.00E+00	0.00E+00	1.36E+00	9.00E-02	0.00E+00	7.00E-02	2.80E-01	6.50E-01	0.00E+00	1.00E-02	4.40E-01	9.00E-01	0.00E+00
		Period # Date	1 7/1/2015	2 7/3/2015	3 7/6/2015	4 7/12/2015	5 7/16/2015	6 7/18/2015	7 7/23/2015	8 7/28/2015	9 8/4/2015	10 8/11/2015	11 8/15/2015	12 8/30/2015	13 9/15/2015	14 9/29/2015

E:\Jobs\BETA-Group\Presentation\Monitoring Summary - B.xlsx

 Infiltrated
 Rain

 (cfd)
 (inches)
 gpm

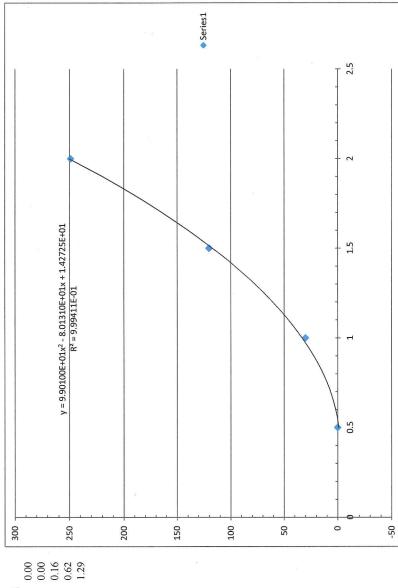
 0.01
 0
 0.00


 27
 0.5
 0.14

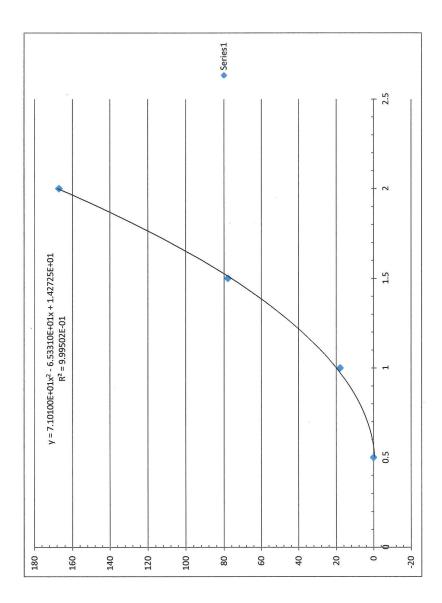
 165
 1
 0.86

 399
 1.5
 2.07

 687
 2
 3.57


System Galleys Mid-W

0 0.5 1.5 2


Infiltrated Rain (cfd) (inches) gpm 0.01 27 165 505 998

Galleys SW System

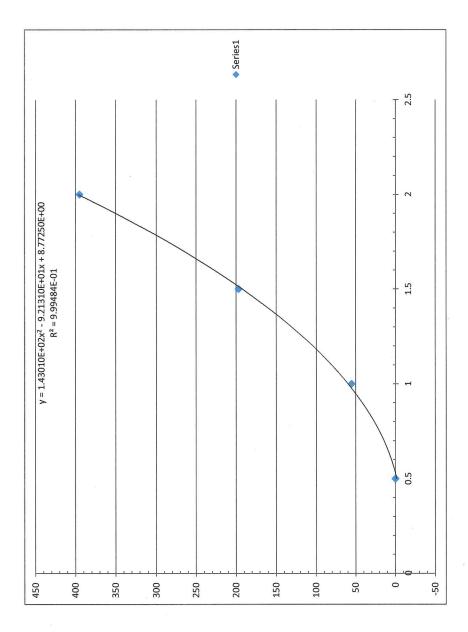
Infiltrated Rain (cfd) (inches) gpm 0.01 0.5 0. 30 1.5 0. 120 1.5 0. 249 2 1.

System Gallerys NW

 Infiltrated
 Rain

 (cfd)
 (inches)
 gpm

 0.01
 0.5
 0.00


 0.01
 0.5
 0.00

 18
 1
 0
 0.09

 78
 1.5
 0.41

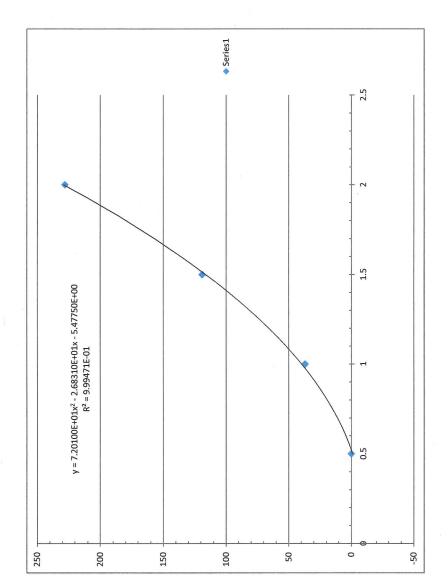
 167
 2
 0.87

System Gallerys SE

 Infiltrated
 Rain

 (cfd)
 (inches)
 gpm

 0.01
 0
 0.00


 0.01
 0.5
 0.00

 55
 1
 0.29

 197
 1.5
 1.02

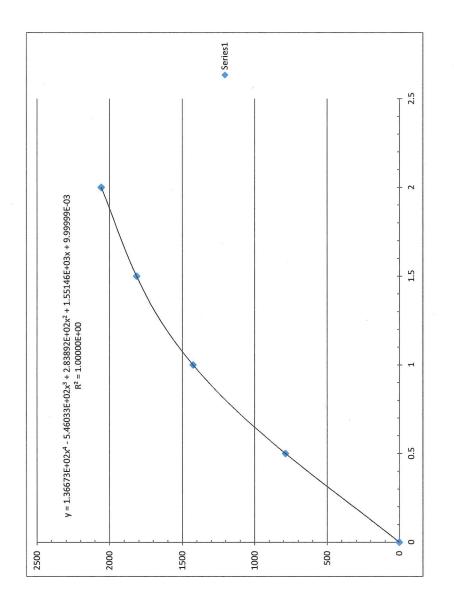
 395
 2
 2.05

System Gallerys Mid-E

 Infiltrated
 Rain

 (cfd)
 (inches)
 gpm

 0.01
 0.
 0.00


 0.01
 0.5
 0.00

 37
 1
 0.19

 119
 1.5
 0.62

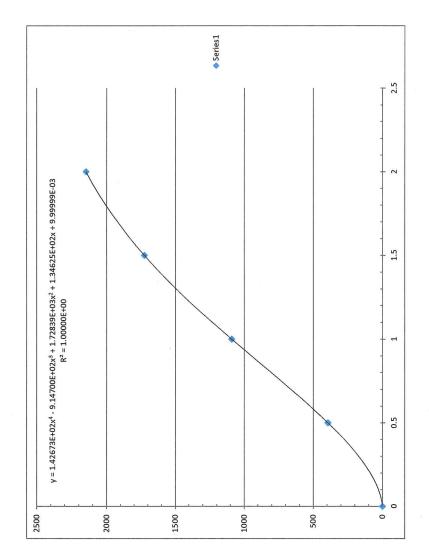
 228
 2
 1.18

System Gallery NE

 Infiltrated
 Rain

 (cfd)
 (inches)
 gpm

 0.01
 0
 0
 00


 787
 0.5
 4.09

 1426
 1
 7.41

 1815
 1.5
 9.43

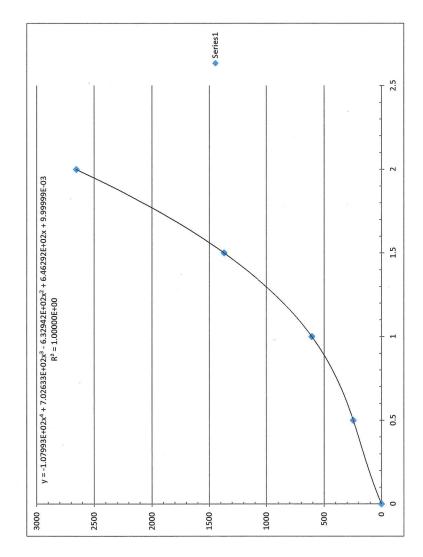
 2057
 2
 10.69

System Gallerys S-E

 Infiltrated
 Rain

 (cfd)
 (inches)
 gpm

 0.01
 0
 0.00


 394
 0.5
 2.05

 1091
 1
 5.67

 1726
 1.5
 8.97

 2148
 2
 11.16

System Gallery S-W

 Infiltrated
 Rain

 (cfd)
 (inches)
 gpm

 0.01
 0
 0.00

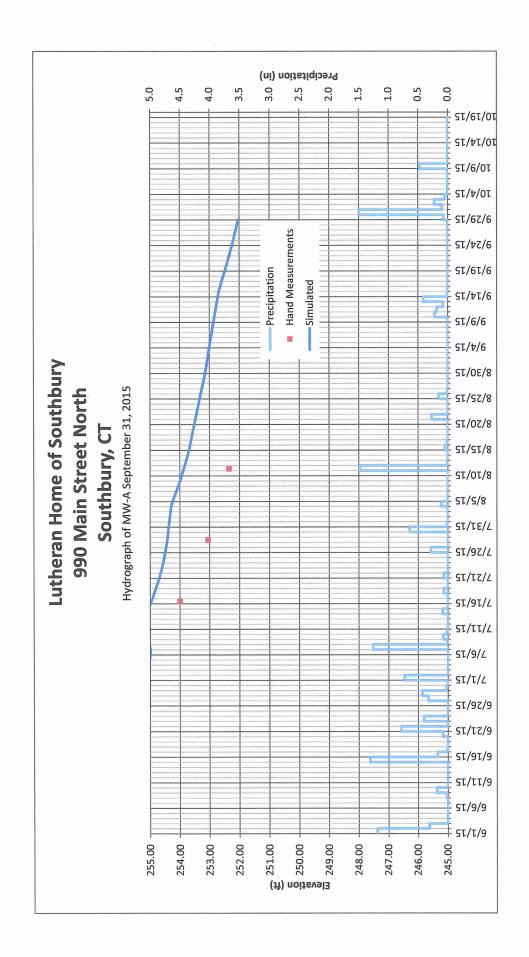
 246
 0.5
 1.28

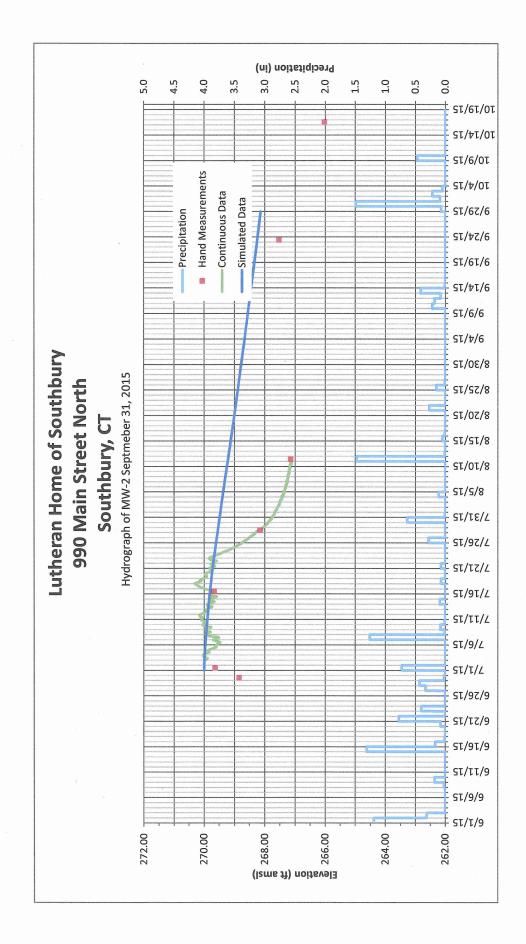

 608
 1
 3.16

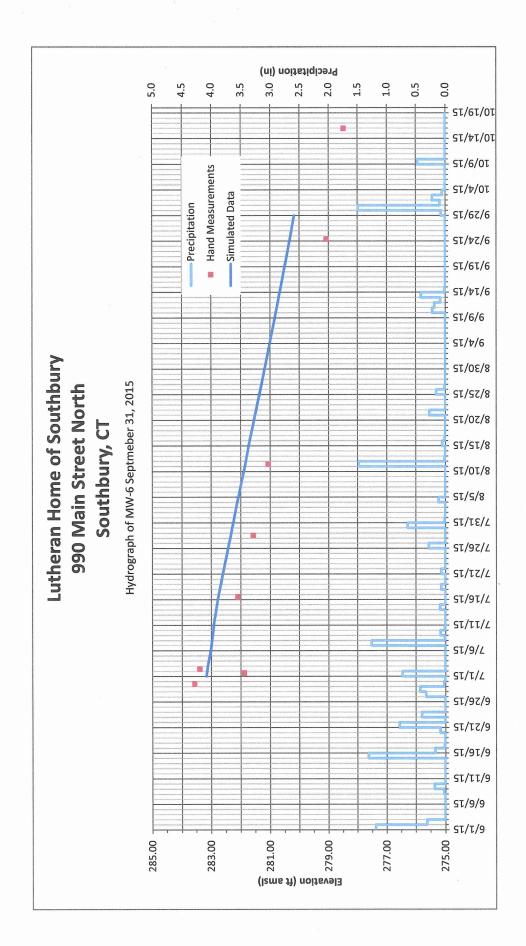
 1370
 1.5
 7.12

 2654
 2
 13.79

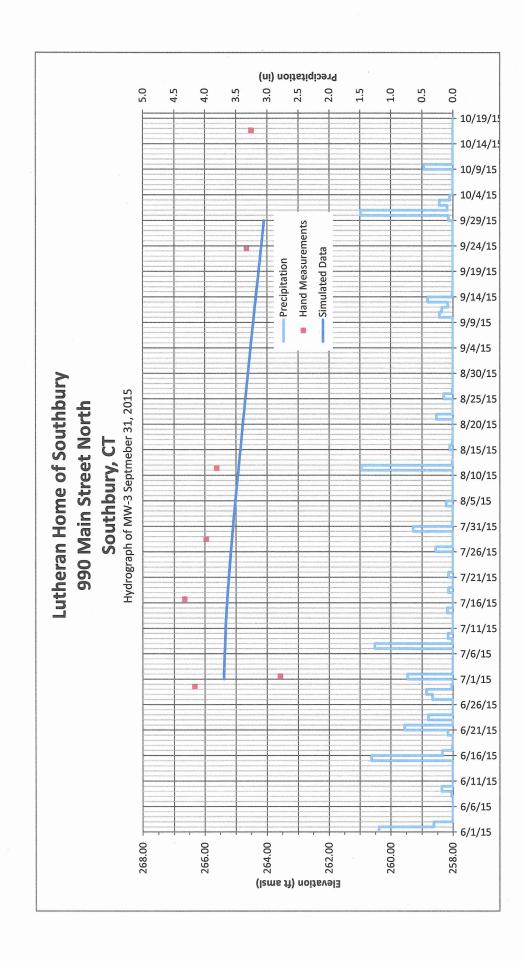
System Dry Well

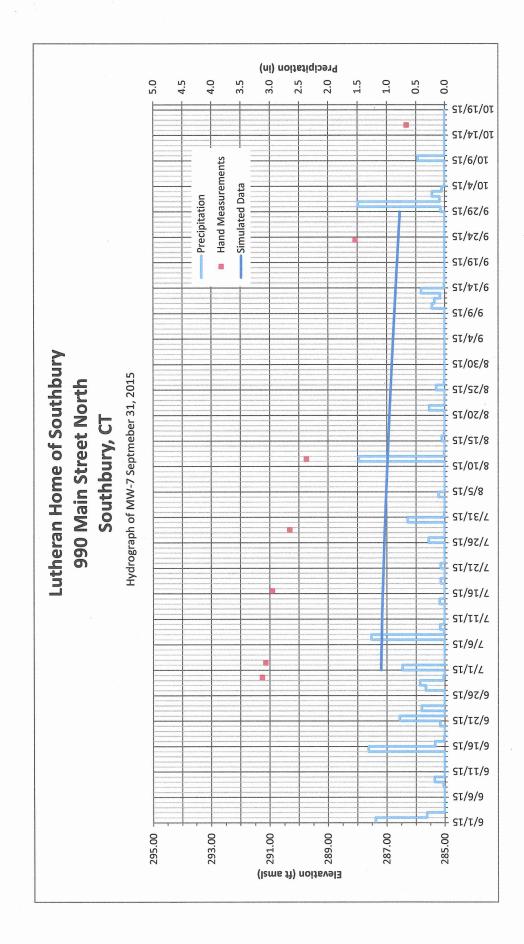

APPENDIX VII CALIBRATIONS RESULTS


C:\Users\ktaylor\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\YJV7R234\Copy of Monitoring Summary - B (2).Xisx

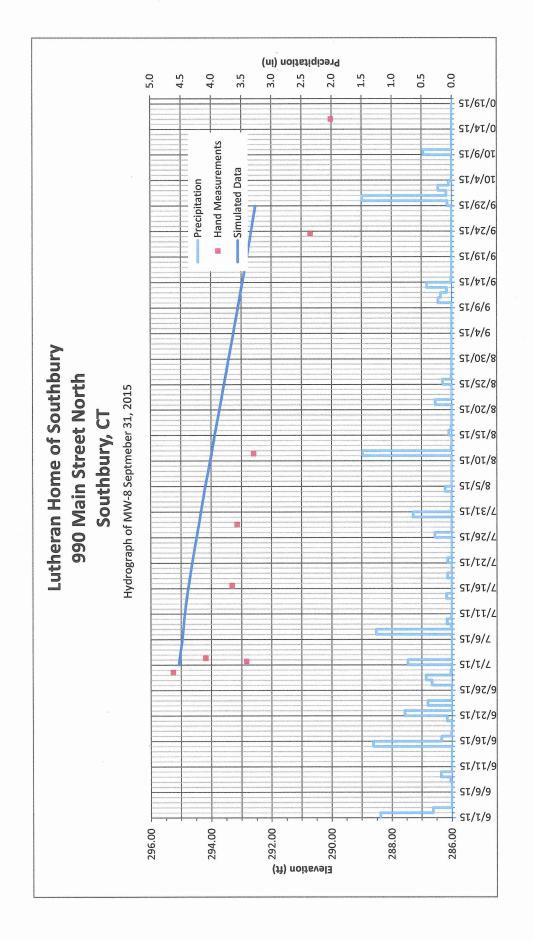

Precipitation (in) 5.0 4.0 3.5 1.0 0.5 0.0 4.5 3.0 2.5 2.0 1.5 ± ST/6T/0T 1 51/4/12 ST/6/0T ST/#/0T Hand Measurements 57/62/6 Continuous Data Simulated Data Precipitation 51/77/6 ST/6T/6 51/41/6 183 ST/6/6 ST/4/6 Lutheran Home of Southbury ST/0E/8 990 Main Street North Hydrograph of MW-5 September 31, 2015 ST/SZ/8 ST/07/8 Southbury, CT -ST/ST/8 ST/0T/8 ST/S/8 ST/TE/L ST/97/L ST/T7/L ST/9T/L ST/TT/Z ST/9/L ST/T/L ST/97/9 ST/TZ/9 ST/9T/9 ST/TT/9 ST/9/9 ST/T/9 300.00 298.00 296.00 294.00 292.00 290.00

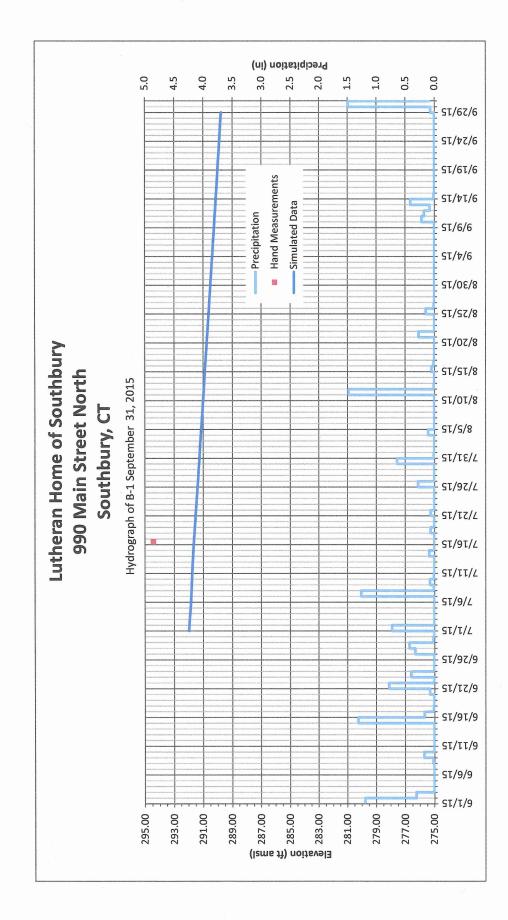
(Izms tt) noitevel3

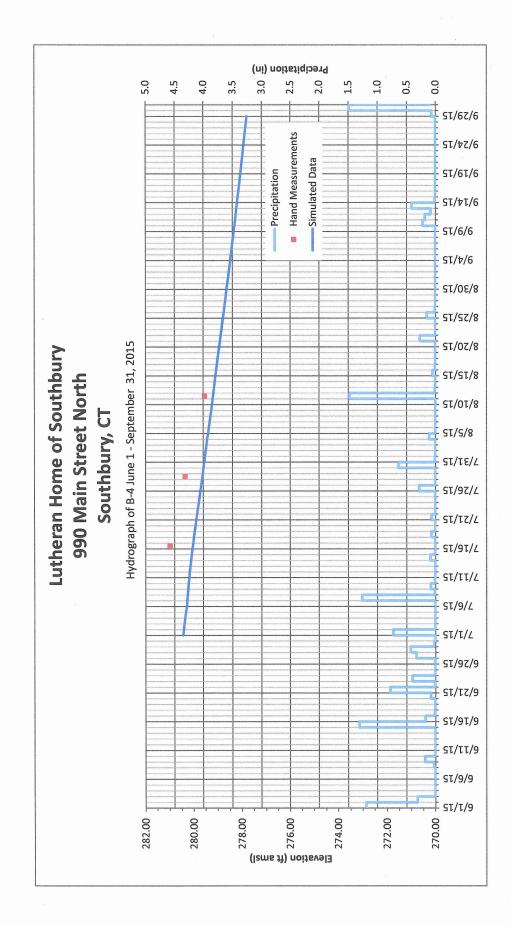

C:\Users\ktaylor\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\VJV7RZ34\Copy of Monitoring Summary - B (2).xlsx

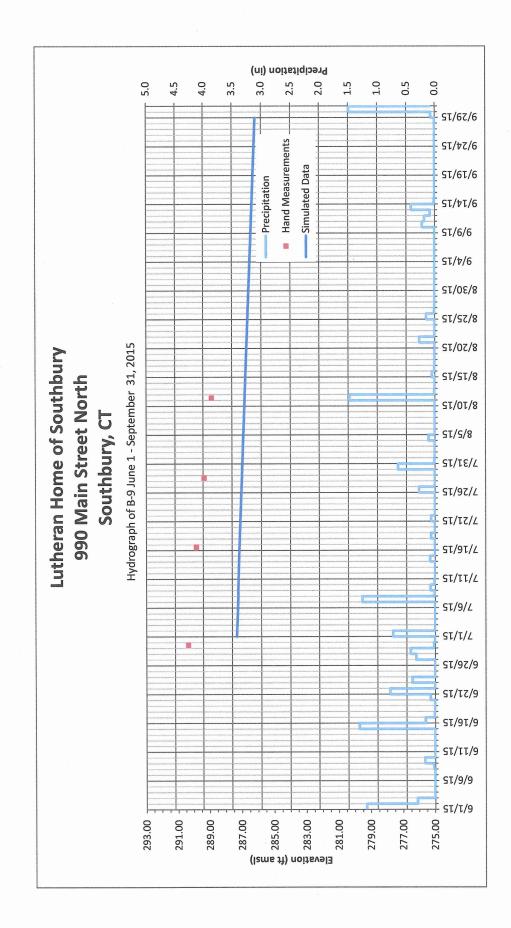


LEGGETTE, BRASHEARS GRAHAM, INC. C:\Users\ktaylor\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\YiV7R24\Copy of Monitoring Summary - B (2).xlsx .

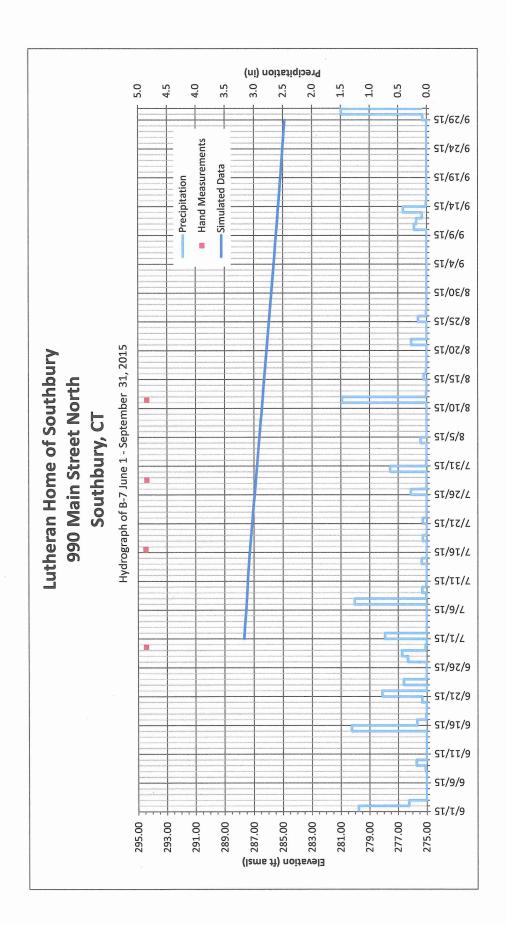

C:\Users\ktaylor\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\VJV7RZ34\Copy of Monitoring Summary - B (2).xlsx

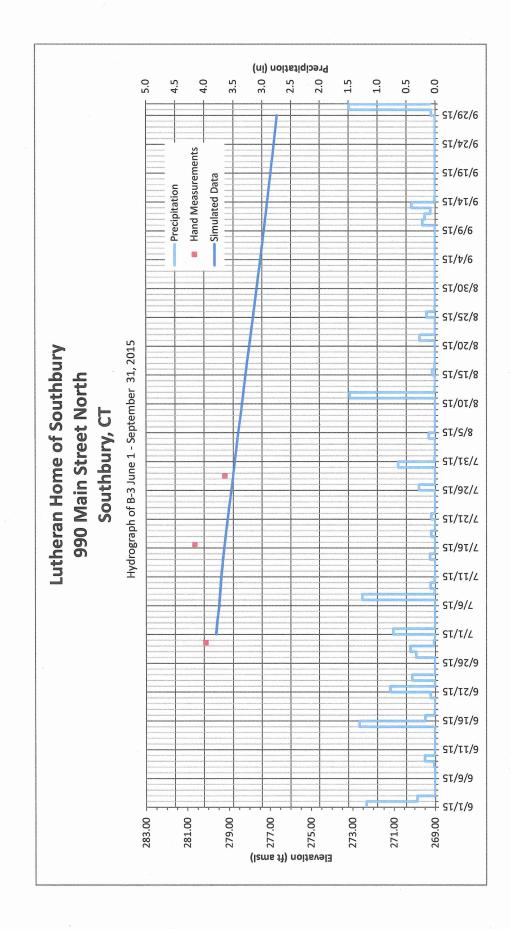





LEGGETTE, BRASHEARS GRAHAM, INC. C:\Users\ktaylor\AppData\Loca\\Microsoft\Windows\Temporary Internet Files\Content.Outlook\YJV7R234\Copy of Monitoring Summary - B (2).xlsx

Precipitation (in) 5.0 3.5 1.0 0.0 4.0 3.0 2.5 1.5 0.5 4.5 2.0 ‡ ST/6T/0T 51/41/01 ST/6/0T Hand Measurements ST/#/OT Simulated Data Precipitation ST/6Z/6 S1/42/6 ST/6T/6 ST/77/6 ST/6/6 ST/7/6 Lutheran Home of Southbury ST/0E/8 990 Main Street North Hydrograph of MW-4 Septmeber 31, 2015c ST/SZ/8 ST/02/8 Southbury, CT ST/ST/8 ST/0T/8 ST/S/8 ST/TE/L ST/97/L ST/T7/L ST/9T/L ST/TT/L ST/9/L ST/T/L M ST/97/9 ST/TZ/9 ST/9T/9 ST/TT/9 ST/9/9 ST/T/9 Elevation (ft) 250.00 256.00 254.00 252.00 248.00 246.00 244.00




(ni) noitatiqioarq 5.0 4.5 4.0 3.5 1.5 1.0 0.0 3.0 2.5 2.0 0.5 ‡ st/6z/6 57/72/6 Hand Measurements ST/6T/6 Simulated Data Precipitation 51/41/6 ST/6/6 ST/7/6 ST/0E/8 - ST/SZ/8 ST/07/8 Lutheran Home of Southbury ST/ST/8 990 Main Street North Hydrograph of B-2 September 31, 2015 ST/0T/8 Southbury, CT ST/S/8 ST/TE/L ST/97/L ST/T7/L ST/9T/L ST/TT/L ST/9/L ST/T/L ST/97/9 ST/TZ/9 ST/9T/9 ST/TT/9 ST/9/9 ‡ sτ/τ/9 286.00 272.00 270.00 288.00 284.00 280.00 278.00 276.00 274.00 282.00 (Isme ft) noitevel3

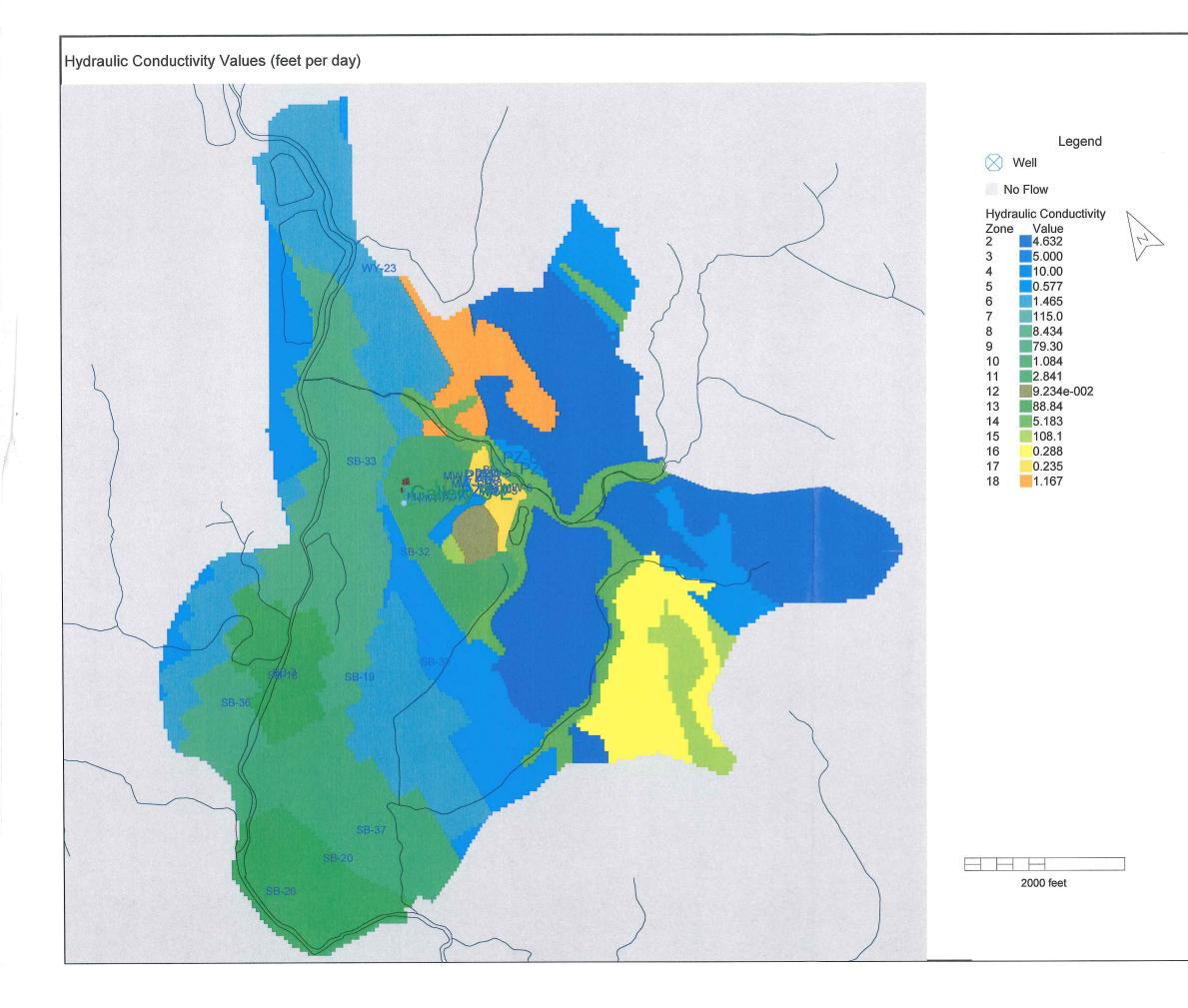
LEGGETTE, BRASHEARS GRAHAM, INC.

C:\Users\ktaylor\AppData\Loca\Microsoft\Windows\Temporary Internet Files\Content_Outlook\YJV7R234\Copy of Monitoring Summary - B (2).xisx

LEGGETTE, BRASHEARS GRAHAM, INC. C:\Users\ktaylor\AppData\Loca\Microsoft\Windows\Temporary Internet Files\Content.Outlook\YJV7R234\Copy of Monitoring Summary - B (2).Xisx

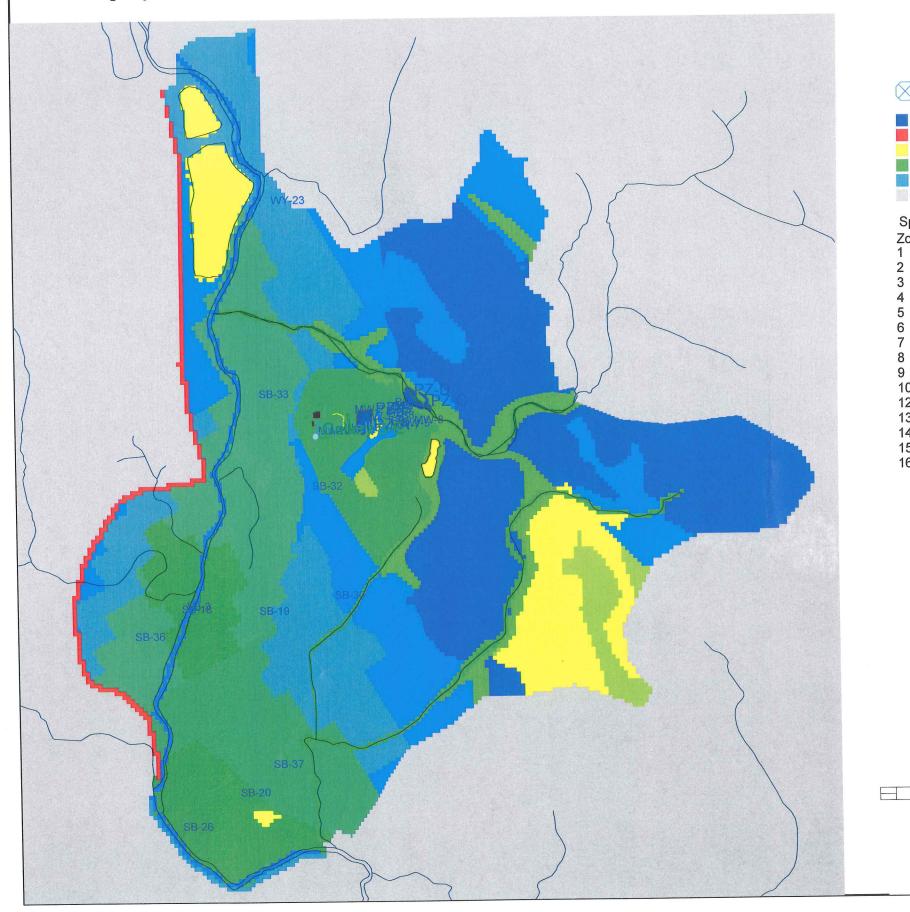
LEGGETTE, BRASHEARS GRAHAM, INC.

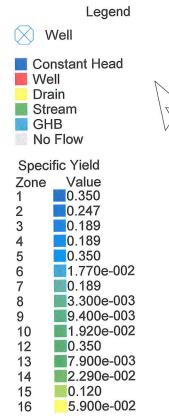
C:\Users\ktaylor\AppData\Loca\\Microsoft\Windows\Temporary Internet Files\Content.Outlook\/JV7R234\Copy of Monitoring Summary - B (2).xisx

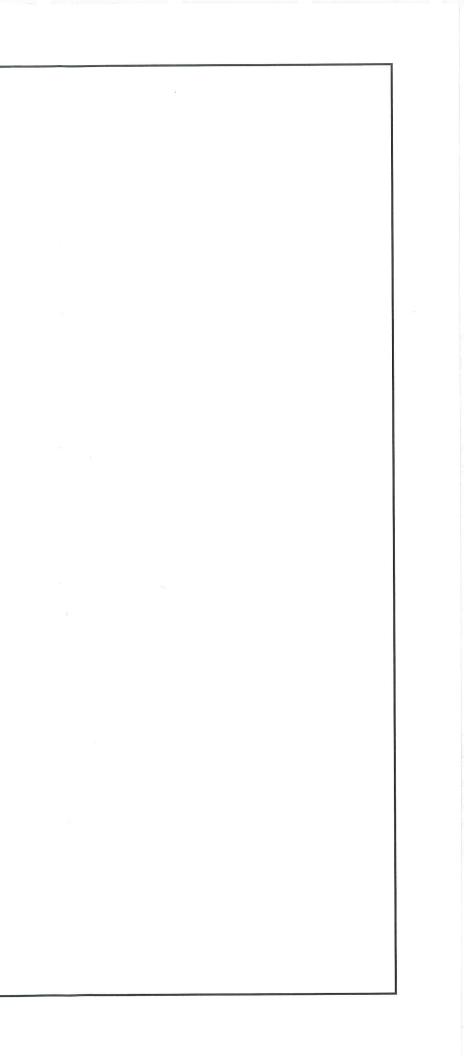

Precipitation (in) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ± st/6z/6 Hand Measurements 5/54/J2 Simulated Data ST/6T/6 Precipitation ST/#T/6 ST/6/6 1 ST/7/6 ST/0E/8 ST/SZ/8 Hydrograph of B-8 June 1 - September 31, 2015 ST/07/8 Lutheran Home of Southbury - ST/ST/8 990 Main Street North ST/0T/8 Southbury, CT ST/S/8 ST/TE/L ST/97/L ST/T7/L ST/9T/L ST/TT/L ST/9/L ST/T/L ST/97/9 F ST/TZ/9 - ST/9T/9 ST/TT/9 ST/9/9 ‡ st/t/9 Elevation (ft ams) 292.00 288.00 288.00 280.00 300.00 298.00 296.00 286.00 284.00 282.00 294.00

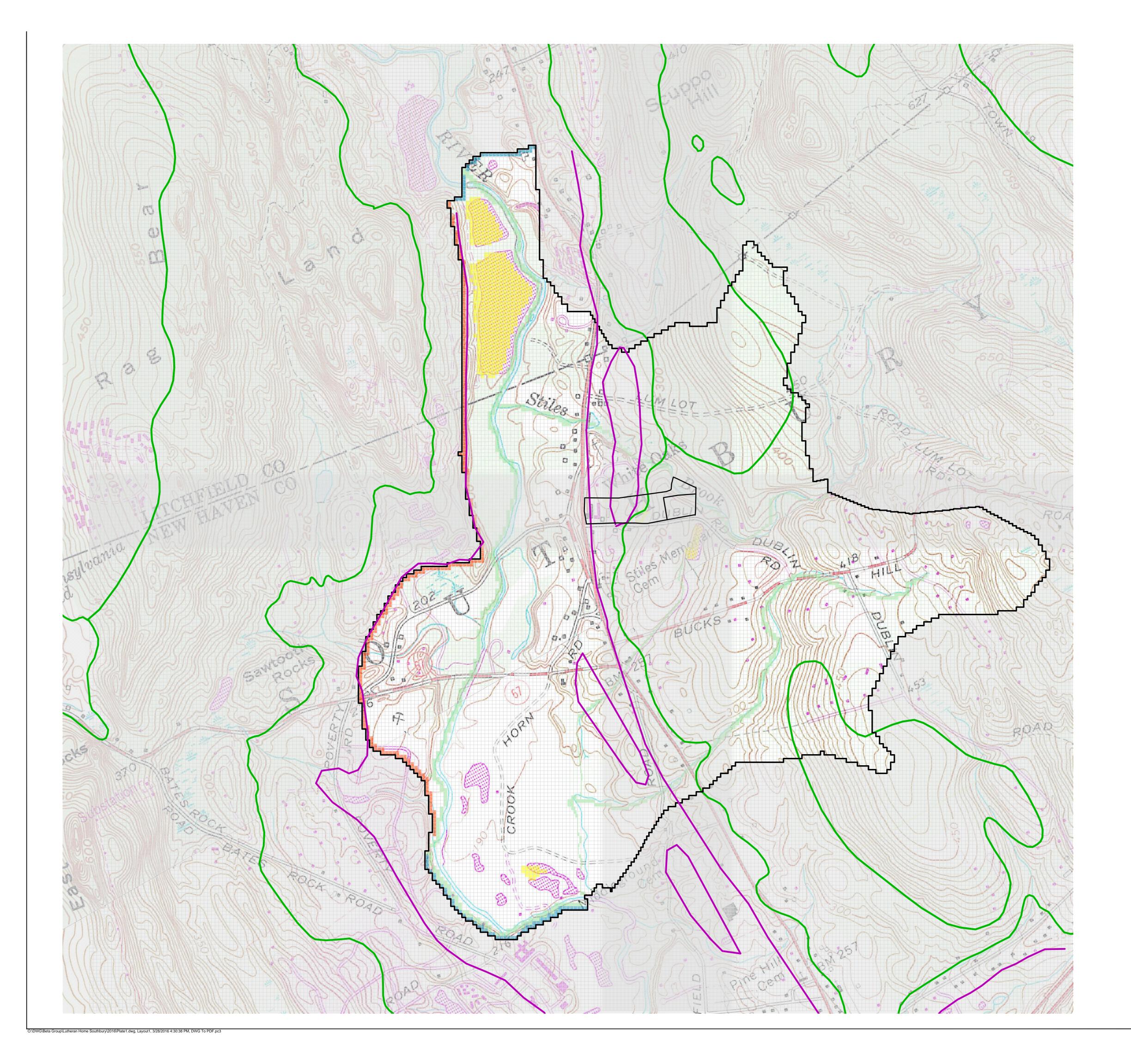
LEGGETTE, BRASHEARS GRAHAM, INC.

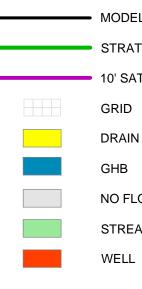
LEGGETTE, BRASHEARS GRAHAM, INC. C:\User\ktaylor\AppData\Loca\Microsoft\Windows\Temporary Internet Files\Content.Outlook\YJV7R234\Copy of Monitoring Summary - B (2).Xlsx


APPENDIX VIII FINAL MODEL PARAMETERS


LEGGETTE, BRASHEARS & GRAHAM, INC.




Simulated Specific Yield Values



-					
	2	000	feet		

		LUTI	HERA	N HOM	IE OF	SOUTHE	BURY	
			990 M	IAIN ST	FREE	Г NORTH	[
``		SC	DUTH	BURY,	CON	NECTICU	JT	
		MOI	DEL GRI	D AND BO	DUNDA	RY CONDITI	IONS	
	DATE	REVISE	ED	PREPARED BY:		ΓΤΕ, BRASHEARS		,
					Professional G	roundwater and Environ 4 Research D	e	ering Services
X				B		Suite 204 Shelton, Connecti	4	
0 600						(203) 929-8		
SCALE IN FEET	DRAWN	: RAC	CHECKE	D: KT	DATE:	03/28/16	PLATE:	1

PROPERTY BOUNDARY MODEL BOUNDARY STRATIFIED DRIFT / TILL CONTACT 10' SATURATED THICKNESS GRID DRAIN GHB NO FLOW STREAM

LEGEND

Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cet1@cetlabs.com

Client: Ms. Tunde Sandor Leggette, Brashears & Graham 4 Research Dr. Suite 204 Shelton, CT 06484

Analytical Report CET# 6020202

Report Date:February 18, 2016 Project: BETA, Southbury

Connecticut Laboratory Certificate: PH 0116 Massachusetts laboratory Certificate: M-CT903

New York Certification: 11982 Rhode Island Certification: 199

SAMPLE SUMMARY

The sample(s) were received at 3.0°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
MW-2	6020202-01	Water	2/10/2016 10:17	02/11/2016
MW-3	6020202-02	Water	2/10/2016 9:32	02/11/2016
MW-4	6020202-03	Water	2/10/2016 15:50	02/11/2016
MW-6	6020202-04	Water	2/10/2016 11:33	02/11/2016
MW-8	6020202-05	Water	2/10/2016 11:15	02/11/2016
MW-9	6020202-06	Water	2/09/2016 15:45	02/11/2016
MW-10	6020202-07	Water	2/10/2016 10:12	02/11/2016
MW-11	6020202-08	Water	2/09/2016 15:56	02/11/2016
MW-12	6020202-09	Water	2/10/2016 12:00	02/11/2016
MW-13	6020202-10	Water	2/10/2016 12:00	02/11/2016
PZ-A	6020202-11	Water	2/10/2016 14:45	02/11/2016
PZ-B	6020202-12	Water	2/10/2016 10:20	02/11/2016

Analyte: Total Nitrogen [Calculated Analyte]

Analyst: Various

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
6020202-01	MW-2	14	1.2	mg/L	1				
6020202-02	MW-3	5.5	1.2	mg/L	1				
6020202-03	MW-4	2.8	1.2	mg/L	1				
6020202-04	MW-6	ND	1.2	mg/L	1				
6020202-05	MW-8	4.8	1.2	mg/L	1				
6020202-06	MW-9	12	1.2	mg/L	1				
6020202-07	MW-10	6.1	1.2	mg/L	1				
6020202-08	MW-11	ND	1.2	mg/L	1				
6020202-09	MW-12	98	10	mg/L	10				
6020202-10	MW-13	2.7	1.2	mg/L	1				
6020202-11	PZ-A	3.3	1.2	mg/L	1				
6020202-12	PZ-B	1.8	1.2	mg/L	1				

Analyte: Nitrite as N [EPA 300.0]

Analyst: CC

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
6020202-01	MW-2	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 14:08	
6020202-02	MW-3	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 14:24	
6020202-03	MW-4	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 14:41	
6020202-04	MW-6	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 14:57	
6020202-05	MW-8	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 16:04	
6020202-06	MW-9	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 15:14	
6020202-07	MW-10	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 16:20	
6020202-08	MW-11	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 15:30	
6020202-09	MW-12	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 16:37	
6020202-10	MW-13	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 16:53	
6020202-11	PZ-A	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 17:10	
6020202-12	PZ-B	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 17:26	

Analyte: Nitrate as N [EPA 300.0]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
6020202-01	MW-2	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 14:08	
6020202-02	MW-3	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 14:24	
6020202-03	MW-4	2.8	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 14:41	
6020202-04	MW-6	0.38	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 14:57	
6020202-05	MW-8	0.10	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 16:04	
6020202-06	MW-9	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 15:14	
6020202-07	MW-10	4.4	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 16:20	
6020202-08	MW-11	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 15:30	
6020202-09	MW-12	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 16:37	
6020202-10	MW-13	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 16:53	
6020202-11	PZ-A	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 17:10	
6020202-12	PZ-B	ND	0.10	mg/L	1	B6B1116	02/11/2016	02/11/2016 17:26	

Analyte: Ammonia as N [EPA 350.1]

Analyst: CC

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
6020202-01	MW-2	12	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-02	MW-3	4.5	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-03	MW-4	ND	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-04	MW-6	0.20	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-05	MW-8	0.24	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-06	MW-9	12	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-07	MW-10	0.13	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-08	MW-11	ND	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-09	MW-12	ND	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-10	MW-13	2.6	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-11	PZ-A	0.50	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	
6020202-12	PZ-B	0.23	0.10	mg/L	1	B6B1226	02/12/2016	02/12/2016 16:57	

Analyte: Phosphorous, Total [EPA 365.4]

Analyst: CC

Matrix: Water

Analyte: Orthophosphate as P [SM 4500-P E]

Analyst: CC

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
6020202-01	MW-2	0.74	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-02	MW-3	0.11	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-03	MW-4	ND	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-04	MW-6	ND	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-05	MW-8	0.85	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-06	MW-9	0.33	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-07	MW-10	0.13	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-08	MW-11	0.16	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-09	MW-12	ND	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-10	MW-13	ND	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-11	PZ-A	0.13	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	
6020202-12	PZ-B	ND	0.10	mg/L	1	B6B1131	02/11/2016	02/11/2016 15:11	

Analyte: Total Kjeldahl Nitrogen (TKN) [EPA 351.2]

Analyst: CC

Matrix: Water

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
6020202-01	MW-2	14	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-02	MW-3	5.5	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-03	MW-4	ND	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-04	MW-6	ND	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-05	MW-8	4.7	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-06	MW-9	12	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-07	MW-10	1.7	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-08	MW-11	ND	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-09	MW-12	98	10	mg/L	10	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-10	MW-13	2.7	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-11	PZ-A	3.3	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	
6020202-12	PZ-B	1.8	1.0	mg/L	1	B6B1607	02/17/2016	02/17/2016 17:21	

Analyte: pH [SM 4500-H B]

pH analyzed in lab

Date/Time Laboratory ID Client Sample ID Result RL Units Dilution Batch Prepared Analyzed Notes 6.59 NA pH Units 1 6020202-01 MW-2 B6B1204 02/11/2016 02/11/2016 16:16 6.62 NA pH Units 1 MW-3 B6B1204 02/11/2016 02/11/2016 16:17 6020202-02 6.91 NA pH Units 1 B6B1204 6020202-03 MW-4 02/11/2016 02/11/2016 16:19 8.02 NA pH Units 1 B6B1204 02/11/2016 MW-6 02/11/2016 16:21 6020202-04 7.97 NA pH Units 1 B6B1204 02/11/2016 6020202-05 MW-8 02/11/2016 16:22 pH Units 1 6.77 NA 6020202-06 MW-9 B6B1204 02/11/2016 02/11/2016 16:25 1 6.59 NA pH Units 6020202-07 MW-10 B6B1204 02/11/2016 02/11/2016 16:27 pH Units 1 6.81 NA 6020202-08 MW-11 B6B1204 02/11/2016 02/11/2016 16:29 1 6.43 pH Units 6020202-09 MW-12 NA B6B1204 02/11/2016 02/11/2016 16:33 pH Units 1 6020202-10 MW-13 6.98 NA B6B1204 02/11/2016 02/11/2016 16:40 10.0 NA pH Units 1 6020202-11 PZ-A B6B1204 02/11/2016 02/11/2016 16:46 10.3 NA pH Units 1 6020202-12 PZ-B B6B1204 02/11/2016 02/11/2016 16:47

Analyst: KP

QUALITY CONTROL SECTION

Batch B6B1116 - EPA 300.0

Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B6B1116-BLK1)					Prepared: 2	/11/2016 Analy:	zed: 2/11/20	16	
Nitrate as N	ND	0.10							
Nitrite as N	ND	0.10							
LCS (B6B1116-BS1)					Prepared: 2	/11/2016 Analy:	zed: 2/11/20	16	
Nitrate as N	4.9	0.10	5.000		98.9	80 - 120			
Nitrite as N	5.1	0.10	5.000		103	80 - 120			

Complete Environmental Testing, Inc. 80 Lupes Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

CET # : 6020202

Project: BETA, Southbury

		Batch B6	5B1131 - SN	4500-P	E				
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B6B1131-BLK1) Prepared: 2/11/2016 Analyzed: 2/11/2016									
Orthophosphate as P	ND	0.10							
LCS (B6B1131-BS1)					Prepared: 2	/11/2016 Analy	zed: 2/11/20	16	
Orthophosphate as P	0.355	0.10	0.326		109	80 - 120			
Duplicate (B6B1131-DUP1)		Source: 6020	202-10		Prepared: 2	/11/2016 Analy	zed: 2/11/20	16	
Orthophosphate as P	ND	0.10		ND				20	
1 1									

Complete Environmental Testing, Inc. 80 Lupes Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

CET # : 6020202 Project: BETA, Southbury

Batch B6B1204 - SM 4500-H B													
Analyte	Result (pH Units)	RL (pH Units)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes				
Blank (B6B1204-BLK1)					Prepared: 2	/11/2016 Analy	zed: 2/11/201	6					
pH	6.42												
Duplicate (B6B1204-DUP1)		Source: 60202	02-12		Prepared: 2	/11/2016 Analy	zed: 2/11/201	6					
pH	10.4			10.3			0.0967	5					

CET # : 6020202 Project: BETA, Southbury

	Batch B6B1226 - EPA 350.1														
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes						
Blank (B6B1226-BLK1)					Prepared: 2	/12/2016 Analy	zed: 2/12/20	16							
Ammonia as N	ND	0.10													
LCS (B6B1226-BS1)					Prepared: 2	/12/2016 Analy	zed: 2/12/20	16							
Ammonia as N	5.2	0.10	5.000		104	80 - 120									

CET #: 6020202

Project: BETA, Southbury

	Batch B6B1606 - EPA 365.4														
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes						
Blank (B6B1606-BLK1)					Prepared: 2/	/17/2016 Analy	zed: 2/17/201	6							
Phosphorous, Total	ND	0.10													
LCS (B6B1606-BS1)					Prepared: 2/	/17/2016 Analy	zed: 2/17/201	6							
Phosphorous, Total	0.530	0.10	0.509		104	80 - 120									
Duplicate (B6B1606-DUP1)		Source: 6020	202-01		Prepared: 2/	/17/2016 Analy	zed: 2/17/201	6							
Phosphorous, Total	2.32	0.10		2.50			7.47	20							
Matrix Spike (B6B1606-MS1)		Source: 6020	202-01		Prepared: 2/	/17/2016 Analy	zed: 2/17/201	6							
Phosphorous, Total	2.96	0.10	0.509	2.50	90.5	80 - 120									

Complete Environmental Testing, Inc. 80 Lupes Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

CET # : 6020202

Project: BETA, Southbury

	Batch B6B1607 - EPA 351.2														
Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes						
Blank (B6B1607-BLK1)					Prepared: 2	/17/2016 Analy	zed: 2/17/201	6							
Total Kjeldahl Nitrogen (TKN)	ND	1.0													
LCS (B6B1607-BS1)					Prepared: 2	/17/2016 Analy	zed: 2/17/201	6							
Total Kjeldahl Nitrogen (TKN)	5.43	1.0	5.000		109	80 - 120									
Duplicate (B6B1607-DUP1)		Source: 6020	202-01		Prepared: 2	/17/2016 Analy	zed: 2/17/201	6							
Total Kjeldahl Nitrogen (TKN)	14.8	1.0		14.0			5.56	20							
Matrix Spike (B6B1607-MS1)		Source: 6020	0202-01		Prepared: 2	/17/2016 Analy	zed: 2/17/201	6							
Total Kjeldahl Nitrogen (TKN)	19.6	1.0	5.000	14.0	112	80 - 120									

Questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

1 LAP

David Ditta Laboratory Director

Report Comments:

Sample Result Flags:

- E- The result is estimated, above the calibration range.
- H- The surrogate recovery is above the control limits.
- L- The surrogate recovery is below the control limits.
- B- The compound was detected in the laboratory blank.
- P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
- D- The RPD between the sample and the sample duplicate is high. Sample Homogenity may be a problem.
- +- The Surrogate was diluted out.
- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.
- I- The Analyte exceeds %RSD limits for the Initial Calibration. This is a non-directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at the specified detection limit

All analyses were performed in house unless a Reference Laboratory is listed. Samples will be disposed of 30 days after the report date. 80 Lupes Drive Stratford, CT 06615

Tel: (203) 377-9984 Fax: (203) 377-9952 email: cet1@cetlabs.com

Quality Control Definitions and Abbreviations

Internal Standard (IS)	An Analyte added to each sample or sample extract. An internal standard is used to monitor retention
	time, calculate relative response, and quantify analytes of interest.
Surrogate Recovery	The % recovery for non-tarer organic compounds that are spiked into all samples. Used to determine
	method performance.
Continuing Calibration	An analytical standard analyzed with each set of samples to verify initial calibration of the system.
Batch	Samples that are analyzed together with the same method, sequence and lot of reagents within the same
	time period.
ND	Not detected
RL	Reporting Limit
Dilution	Multiplier added to detection levels (MDL) and/or sample results due to interferences and/or high
	concentration of target compounds.
Duplicate	Result from the duplicate analysis of a sample.
Result	Amount of analyte found in a sample.
Spike Level	Amount of analyte added to a sample
Matrix Spike Result	Amount of analyte found including amount that was spiked.
Matrix Spike Dup	Amount of analyte foun in duplicate spikes including amount that was spike.
Matrix Spike % Recovery	% Recovery of spiked amount in sample.
Matrix Spike Dup % Recovery	% Recovery of spiked duplicate amount in sample.
RPD	Relative percent difference between Matrix Spike and Matrix Spike Duplicate.
Blank	Method Blank that has been taken through all steps of the analysis.
LCS % Recovery	Laboratory Control Sample percent recovery. The amount of analyte recovered from a fortified sample.
Recovery Limits	A range within which specified measurements results must fall to be compliant.
CC	Calibration Verification

Flags:

- H- Recovery is above the control limits
- L- Recovery is below the control limits
- B- Compound detected in the Blank
- P- RPD of dual column results exceeds 40%
- #- Sample result too high for accurate spike recovery.

Connecticut Laboratory Certification PH0116 Massachussets Laboratory Certification M-CT903 New York Certification 11982 Rhode Island Certification 199 REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Complete Environmental Testing, Inc.

Project Location: BETA, Southbury

Laboratory Sample ID(s):

6020202-01 thru 6020202-12

List RCP Methods Used:

Client: Leggette, Brashears & Graham

Project Number:

Sample Date(s): 02/09/2016, 02/10/2016

CET #: 6020202

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents?	Yes No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes
1B	VPH and EPH Methods only: Was the VPH and EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?	Yes □ No ✓ N/A
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	yes □ No
3	Were samples received at an appropriate temperature (< 6 degrees C.)?	yes □ No □ N/A
4	Were all QA/QC performance criteria specified in the CT DEP Reasonable Confidence Protocol documents achieved?	Yes No
5a	a) Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
5b	b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all consituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes No
7	Are project specific matrix spikes and laboratory duplicates included with this data set?	Yes No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information

must be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence."

This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

re: Lat

Position: Laboratory Director

Printed Name: David Ditta

Date: 02/18/2016

Name of Laboratory: Complete Environmental Testing, Inc.

This certification form is to be used for RCP methods only.

QC Batch/Sequence Report

Batch	Sequence	CET ID	Sample ID	Specific Method	Matrix	Collection Date
[CALC]		6020202-01	MW-2	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-02	MW-3	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-03	MW-4	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-04	MW-6	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-05	MW-8	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-06	MW-9	Calculated Analyte	Water	02/09/2016
[CALC]		6020202-07	MW-10	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-08	MW-11	Calculated Analyte	Water	02/09/2016
[CALC]		6020202-09	MW-12	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-10	MW-13	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-11	PZ-A	Calculated Analyte	Water	02/10/2016
[CALC]		6020202-12	PZ-B	Calculated Analyte	Water	02/10/2016
B6B1116		6020202-01	MW-2	EPA 300.0	Water	02/10/2016
B6B1116		6020202-02	MW-3	EPA 300.0	Water	02/10/2016
B6B1116		6020202-03	MW-4	EPA 300.0	Water	02/10/2016
B6B1116		6020202-04	MW-6	EPA 300.0	Water	02/10/2016
B6B1116		6020202-05	MW-8	EPA 300.0	Water	02/10/2016
B6B1116		6020202-06	MW-9	EPA 300.0	Water	02/09/2016
B6B1116		6020202-07	MW-10	EPA 300.0	Water	02/10/2016
B6B1116		6020202-08	MW-11	EPA 300.0	Water	02/09/2016
B6B1116		6020202-09	MW-12	EPA 300.0	Water	02/10/2016
B6B1116		6020202-10	MW-13	EPA 300.0	Water	02/10/2016
B6B1116		6020202-11	PZ-A	EPA 300.0	Water	02/10/2016
B6B1116		6020202-12	PZ-B	EPA 300.0	Water	02/10/2016
B6B1226		6020202-01	MW-2	EPA 350.1	Water	02/10/2016
B6B1226		6020202-02	MW-3	EPA 350.1	Water	02/10/2016
B6B1226		6020202-03	MW-4	EPA 350.1	Water	02/10/2016
B6B1226		6020202-04	MW-6	EPA 350.1	Water	02/10/2016
B6B1226		6020202-05	MW-8	EPA 350.1	Water	02/10/2016
B6B1226		6020202-06	MW-9	EPA 350.1	Water	02/09/2016
B6B1226		6020202-07	MW-10	EPA 350.1	Water	02/10/2016
B6B1226		6020202-08	MW-11	EPA 350.1	Water	02/09/2016
B6B1226		6020202-09	MW-12	EPA 350.1	Water	02/10/2016
B6B1226		6020202-10	MW-13	EPA 350.1	Water	02/10/2016
B6B1226		6020202-11	PZ-A	EPA 350.1	Water	02/10/2016
B6B1226		6020202-12	PZ-B	EPA 350.1	Water	02/10/2016
B6B1607		6020202-01	MW-2	EPA 351.2	Water	02/10/2016
B6B1607		6020202-02	MW-3	EPA 351.2	Water	02/10/2016
B6B1607		6020202-03	MW-4	EPA 351.2	Water	02/10/2016
B6B1607		6020202-04	MW-6	EPA 351.2	Water	02/10/2016
B6B1607		6020202-05	MW-8	EPA 351.2	Water	02/10/2016
B6B1607		6020202-06	MW-9	EPA 351.2	Water	02/09/2016
B6B1607		6020202-07	MW-10	EPA 351.2	Water	02/10/2016
B6B1607		6020202-08	MW-11	EPA 351.2	Water	02/09/2016
B6B1607		6020202-09	MW-12	EPA 351.2	Water	02/10/2016
B6B1607		6020202-10	MW-13	EPA 351.2	Water	02/10/2016
B6B1607		6020202-11	PZ-A	EPA 351.2	Water	02/10/2016
B6B1607		6020202-12	PZ-B	EPA 351.2	Water	02/10/2016

B6B1606	6020202-01	MW-2	EPA 365.4	Water	02/10/2016
B6B1606	6020202-02	MW-3	EPA 365.4	Water	02/10/2016
B6B1606	6020202-03	MW-4	EPA 365.4	Water	02/10/2016
B6B1606	6020202-04	MW-6	EPA 365.4	Water	02/10/2016
B6B1606	6020202-05	MW-8	EPA 365.4	Water	02/10/2016
B6B1606	6020202-06	MW-9	EPA 365.4	Water	02/09/2016
B6B1606	6020202-07	MW-10	EPA 365.4	Water	02/10/2016
B6B1606	6020202-08	MW-11	EPA 365.4	Water	02/09/2016
B6B1606	6020202-09	MW-12	EPA 365.4	Water	02/10/2016
B6B1606	6020202-10	MW-13	EPA 365.4	Water	02/10/2016
B6B1606	6020202-11	PZ-A	EPA 365.4	Water	02/10/2016
B6B1606	6020202-12	PZ-B	EPA 365.4	Water	02/10/2016
B6B1204	6020202-01	MW-2	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-02	MW-3	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-03	MW-4	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-04	MW-6	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-05	MW-8	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-06	MW-9	SM 4500-H B	Water	02/09/2016
B6B1204	6020202-07	MW-10	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-08	MW-11	SM 4500-H B	Water	02/09/2016
B6B1204	6020202-09	MW-12	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-10	MW-13	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-11	PZ-A	SM 4500-H B	Water	02/10/2016
B6B1204	6020202-12	PZ-B	SM 4500-H B	Water	02/10/2016
B6B1131	6020202-01	MW-2	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-02	MW-3	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-03	MW-4	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-04	MW-6	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-05	MW-8	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-06	MW-9	SM 4500-P E	Water	02/09/2016
B6B1131	6020202-07	MW-10	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-08	MW-11	SM 4500-P E	Water	02/09/2016
B6B1131	6020202-09	MW-12	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-10	MW-13	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-11	PZ-A	SM 4500-P E	Water	02/10/2016
B6B1131	6020202-12	PZ-B	SM 4500-P E	Water	02/10/2016

ply.	S	Tunde Sandor	Report To:	Shalton	TKERARCH Ur, JAIHE		Company Name	Client / Reporting Information		RELINQUISHED BY:		NUMBER AND SOL	(M=MeOH B	1	PRESERVATIVE (CI-HCI, N-HNO:	MW-13	MW-12	MW-11	2012	MW-9	MW-8	MW-6	Mw-4	NW- 3	MW-2	Bottle Request e-mail: bottleorders@cetlabs.com Sample ID Sample ID (Units) Depths Date/T	Stratford, CT 06615 e-ma				6020202
** TAT begins when the samples are received at the Lab and all issues are resolved. TAT	Fax #	tsander@lbqut.com	E-mail		State Zin	100		tion		DATETIME RECEIVEDBY:	120	VIIIIA IN RECEIVED BY	W=Water	12	PRESERVATIVE (CI-HCI, N-HNO3, S-H2SO4, Na-NaOH, C=Cool, O-Other)	*	2)10/1200	219/1160/556	2/10/162/02	241/160 1545		133	630	932	2/whe with w	tion	e-mail: cet1@cetlabs.com ∞-2mr A=Ar T Fax: (203) 377-9952 S=Soil Chr e-mail: cet1@cetlabs.com pw-omking (chr	Matrix	COMPLETE ENVIRONMENTAL TESTING, INC.		
	Temp Upon 3.0 °C	Laboratory Certification Needed (check one)	RSR Reporting Limits (check one)	Data Report X PDF	QA/QC Std	Location: Southbury	Project BETH	¢				NOTES:									×		×	×	×.	2-3 Days * Std (5-7 Days) 8260 CT List 8260 Aromat 8260 Haloge 624 CT ETPH 8270 CT List 8270 PNAs PCBs Pesticides	ics ns	Turnaround Organics			1
for samples received after 3 p.m. will start on the next business day.	Evidence of \widehat{Y} N SHEET	check one) XCT INY) X GA 🗆 GB 🗆 SWP	EDD - Specify Format	☐ Site Specific (MS/MSD) *	CT Collector(s):	Project #:	Ninder Po #	Project Information									XXX	XXX		XXX	XXXX			XXX	13 Priority Pc 8 RCRA TOTAL TCLP SPLP Field Filtered Lab To Filter		Metals (check all that apply)		2	Volatile Soils
on the next business day. REV. 06/14	ET 1 OF 2	L RI L MA	Other	Other	X RCP Pkg * DQAW *	PL/JP										XXXX /	<pre> XXXX</pre>	$\frac{1}{2}$	< <u>X</u> XXXX 2	$\langle X X X X \rangle$ 2	XXXX	XXXX 2	<u> </u>	XXXXX 2	(XXXX) 2	Ustrite, TKN), Litrogen Prospinal tutal prospinal tutal prospinal tutal prospinal tutal prospinal tutal prospinal tutal prospinal	, pH, te, phores cont.	Additional Analysis		Date and Time in Freezer	Only:

Page 18 of 19

ſ	Fax #	Tunde Scholer tschor @ bact. com	G	State	2025	LAG IN	Company Name	Client / Reporting Information	RELINGUISHED BY: DATE/TIME 'RECEIVED BX'	2]11] JUC		(M=MeOH B=Bisulfate W=Water	(P-Plastic, G-Glass, V-V	PRESERVATIVE (CI-HCI, N-HNO ₃ , S-H ₂ SO ₄ , Na-NaOH, C=Cool, O-Other)					VI MANONIAL A ED	Sample ID Sample Collection Wipe UD (Units) Date/Time (Specify)	e-mail: cet1@cetlabs.com Water Bottle Request e-mail: bottleorders@cetlabs.com Water C-Cassette	Bot Lupes Drive Iei: (203) 377-9984 A=Ar Stratford, CT 06615 Fax: (203) 377-9952 S=Soil S=So	Tel: (000) 077 0004	COMPLETE ENVIRONMENTAL TESTING, INC.		602022
for samples received after 3		Laboratory Certification Needed (check one)	DD - Specify Format		" Southbury, CT		AL-U O	Project Contact: Jund: Scinds Project Information			ME NOTES:									Same Da Next Day 2-3 Days Std (5-7 Da 8260 CT 8260 Hal 624 CT ETPH 8270 CT 8270 PN PCBs Pesticide 13 Priorit 8 RCRA TOTAL TCLP SPLP Field Filt Lab To F	y * / * s * List List logens H List List As ss ty Poll ered	Time ** (check one)	Turnaround Organics Metals (check all that apply			
m. will start on the next business day	euer 2			3D) * [*] ⊠RCP Pkg * □ DQAW *	collector(s): PL/ JY	Project #:		formation		•									× × × × × × × × × × × × × × × × × × ×	Lab To F Annon Linch Nitrit TKN Nitris Pti, ph Dutzl (TOTAL # NOTE #	nia e, jeh seh	, oute, porte	My Additional Analysis	CET:	Client:	Volatile Soils Only: