

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Bristol County, Massachusetts, Northern Part

Taunton WWTF Infiltration Site 1

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	
Soil Map	6
Legend	7
Map Unit Legend	8
Map Unit Descriptions	8
Bristol County, Massachusetts, Northern Part	10
52A—Freetown muck, 0 to 1 percent slopes	10
230A—Unadilla very fine sandy loam, 0 to 3 percent slopes	11
245B—Hinckley loamy sand, 3 to 8 percent slopes	
245D—Hinckley loamy sand, 15 to 25 percent slopes	14
306B—Paxton fine sandy loam, 0 to 8 percent slopes, very stony	
651—Udorthents, smoothed	17
References	19

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

ဖ

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot Sandy Spot

Severely Eroded Spot

Sinkhole

Sodic Spot

Slide or Slip

å

Spoil Area Stony Spot

Very Stony Spot

Wet Spot Other

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

00

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Bristol County, Massachusetts, Northern Part Survey Area Data: Version 10, Oct 6, 2017

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: May 14, 2010—Apr 1. 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
52A	Freetown muck, 0 to 1 percent slopes	0.9	6.4%
230A	Unadilla very fine sandy loam, 0 to 3 percent slopes	0.6	3.9%
245B	Hinckley loamy sand, 3 to 8 percent slopes	2.3	15.4%
245D	Hinckley loamy sand, 15 to 25 percent slopes	8.2	56.0%
306B	Paxton fine sandy loam, 0 to 8 percent slopes, very stony	2.7	18.3%
651	Udorthents, smoothed	0.0	0.0%
Totals for Area of Interest		14.7	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it

was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Bristol County, Massachusetts, Northern Part

52A—Freetown muck, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 2t2q9

Elevation: 0 to 1,110 feet

Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 240 days

Farmland classification: Farmland of unique importance

Map Unit Composition

Freetown and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Freetown

Setting

Landform: Bogs, kettles, depressions, depressions, marshes, swamps

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread, dip

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Highly decomposed organic material

Typical profile

Oe - 0 to 2 inches: mucky peat Oa - 2 to 79 inches: muck

Properties and qualities

Slope: 0 to 1 percent

Percent of area covered with surface fragments: 0.0 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Very poorly drained

Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high

(0.14 to 14.17 in/hr)

Depth to water table: About 0 to 6 inches

Frequency of flooding: Rare Frequency of ponding: Frequent

Available water storage in profile: Very high (about 19.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 5w

Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Swansea

Percent of map unit: 5 percent

Landform: Bogs, kettles, depressions, depressions, marshes, swamps

Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Tread, dip

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

Whitman

Percent of map unit: 5 percent

Landform: Depressions, drainageways

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

Scarboro

Percent of map unit: 5 percent

Landform: Depressions, drainageways

Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Base slope, tread, dip

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

230A—Unadilla very fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 9997 Elevation: 600 to 1,800 feet

Mean annual precipitation: 45 to 54 inches Mean annual air temperature: 43 to 54 degrees F

Frost-free period: 145 to 240 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Unadilla and similar soils: 80 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Unadilla

Setting

Landform: Lake plains

Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Soft coarse-silty glaciolacustrine deposits

Typical profile

H1 - 0 to 7 inches: very fine sandy loam H2 - 7 to 28 inches: very fine sandy loam

H3 - 28 to 60 inches: loamy very fine sand

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 1

Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Scio

Percent of map unit: 10 percent

Hydric soil rating: No

Agawam

Percent of map unit: 5 percent

Hydric soil rating: No

Amostown

Percent of map unit: 5 percent

Hydric soil rating: No

245B—Hinckley loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2svm8

Elevation: 0 to 1,430 feet

Mean annual precipitation: 36 to 53 inches Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Hinckley and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hinckley

Setting

Landform: Eskers, kames, moraines, outwash plains, outwash terraces, outwash

deltas, kame terraces

Landform position (two-dimensional): Summit, shoulder, backslope, footslope Landform position (three-dimensional): Nose slope, side slope, base slope, crest.

tread, riser

Down-slope shape: Linear, convex, concave Across-slope shape: Convex, linear, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss

and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand Bw2 - 11 to 16 inches: gravelly loamy sand BC - 16 to 19 inches: very gravelly loamy sand

C - 19 to 65 inches: very gravelly sand

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

very high (1.42 to 99.90 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm) Available water storage in profile: Very low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3s

Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Windsor

Percent of map unit: 8 percent

Landform: Eskers, kames, moraines, outwash plains, outwash terraces, outwash

deltas, kame terraces

Landform position (two-dimensional): Summit, shoulder, backslope, footslope Landform position (three-dimensional): Nose slope, side slope, base slope, crest,

tread, riser

Down-slope shape: Linear, convex, concave

Across-slope shape: Convex, linear, concave

Hydric soil rating: No

Sudbury

Percent of map unit: 5 percent

Landform: Moraines, outwash plains, outwash terraces, outwash deltas, kame terraces

Landform position (two-dimensional): Backslope, footslope

Landform position (three-dimensional): Side slope, base slope, head slope, tread

Down-slope shape: Concave, linear Across-slope shape: Linear, concave

Hydric soil rating: No

Agawam

Percent of map unit: 2 percent

Landform: Eskers, kames, moraines, outwash plains, outwash terraces, outwash

deltas, kame terraces

Landform position (two-dimensional): Summit, shoulder, backslope, footslope Landform position (three-dimensional): Nose slope, side slope, base slope, crest,

tread, riser

Down-slope shape: Linear, convex, concave Across-slope shape: Convex, linear, concave

Hydric soil rating: No

245D—Hinckley loamy sand, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 2svmc

Elevation: 0 to 1,460 feet

Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Hinckley and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hinckley

Setting

Landform: Eskers, kames, moraines, outwash plains, outwash terraces, outwash

deltas, kame terraces

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Side slope, crest, head slope, nose slope,

riser

Down-slope shape: Convex, concave, linear Across-slope shape: Concave, linear, convex

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss

and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand Bw2 - 11 to 16 inches: gravelly loamy sand BC - 16 to 19 inches: very gravelly loamy sand C - 19 to 65 inches: very gravelly sand

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Excessively drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

very high (1.42 to 99.90 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Merrimac

Percent of map unit: 8 percent

Landform: Eskers, kames, moraines, outwash plains, outwash terraces

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Side slope, crest, head slope, nose slope,

riser

Down-slope shape: Convex Across-slope shape: Convex

Hydric soil rating: No

Windsor

Percent of map unit: 5 percent

Landform: Eskers, kames, moraines, outwash plains, outwash terraces, outwash

deltas, kame terraces

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Side slope, crest, head slope, nose slope,

riser

Down-slope shape: Convex, concave, linear Across-slope shape: Concave, linear, convex

Hydric soil rating: No

Sudbury

Percent of map unit: 2 percent

Landform: Eskers, moraines, outwash plains, outwash terraces, outwash deltas,

kame terraces

Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Base slope, tread

Down-slope shape: Convex, concave, linear Across-slope shape: Convex, linear, concave

Hydric soil rating: No

306B—Paxton fine sandy loam, 0 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2w673

Elevation: 0 to 1,340 feet

Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 240 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Paxton, very stony, and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Paxton, Very Stony

Setting

Landform: Drumlins, hills, ground moraines

Landform position (two-dimensional): Summit, shoulder, backslope

Landform position (three-dimensional): Crest, side slope

Down-slope shape: Linear, convex Across-slope shape: Convex, linear

Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or

schist

Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material

A - 2 to 10 inches: fine sandy loam
Bw1 - 10 to 17 inches: fine sandy loam
Bw2 - 17 to 28 inches: fine sandy loam
Cd - 28 to 67 inches: gravelly fine sandy loam

Properties and qualities

Slope: 0 to 8 percent

Percent of area covered with surface fragments: 1.6 percent Depth to restrictive feature: 20 to 43 inches to densic material

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.14 in/hr)

Depth to water table: About 18 to 37 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm) Available water storage in profile: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: C Hydric soil rating: No

Minor Components

Woodbridge, very stony

Percent of map unit: 8 percent

Landform: Drumlins, hills, ground moraines

Landform position (two-dimensional): Backslope, footslope, summit

Landform position (three-dimensional): Side slope, crest

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Ridgebury, very stony

Percent of map unit: 4 percent

Landform: Drumlins, ground moraines, hills, depressions, drainageways

Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope, head slope

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

Charlton, very stony

Percent of map unit: 3 percent

Landform: Hills

Landform position (two-dimensional): Shoulder, summit, backslope

Landform position (three-dimensional): Crest, side slope

Down-slope shape: Convex Across-slope shape: Convex

Hydric soil rating: No

651—Udorthents, smoothed

Map Unit Setting

National map unit symbol: v4w7

Elevation: 0 to 3,000 feet

Mean annual precipitation: 45 to 54 inches Mean annual air temperature: 43 to 54 degrees F

Frost-free period: 145 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Udorthents and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udorthents

Setting

Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Excavated and filled land over loose sandy and gravelly

glaciofluvial deposits and/or firm loamy basal till

Typical profile

H1 - 0 to 6 inches: variable H2 - 6 to 60 inches: variable

Properties and qualities

Slope: 0 to 15 percent

Depth to restrictive feature: More than 80 inches

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to very

high (0.06 to 20.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: A Hydric soil rating: Unranked

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf