

PROJECT: 9950. - Veolia/Taunton WWTP Improvements Phase 2

DATE: 11/21/2023

SUBMITTAL: 11376-02 - Fine Bubble Aeration Equipment - O&M Manual REVISION: 1 STATUS: Eng SPEC #: 11376

TO:

Enea Mushi Veolia North America 125 S. 84th Street, Suite 175 Milwaukee, WI 53214 enea.mushi@veolia.com FROM: Nick George Hart Engineering Corporation 800 Scenic View Drive Cumberland, RI 02864 NGeorge@hartcompanies.com

Item	Revision	Description	Status	Date Sent	Date Returned
11376-02		Fine Bubble Aeration Equipment - O&M Manual	Eng	11/21/2023	
Notes:					

Additional Notes:

Status Codes

1-APP – No Exceptions Taken
2-ANR – Make Corrections Noted
3-R&R – Revise and Resubmit
4-REJ – Rejected
5-IPO – For Information Purposes Only
6-NRR – Not Required for Review
ENG – Submitted to Engineer

Sincerely, Hart Engineering Corporation

DATE: <u>11/21/2023</u>

SHOP DRAWING REVIEW FORM AND TRANSMITTAL

DATE: August 29, 2023 TO: Enea Mushi FROM: James Dyment, P.E. Project Manager CPM Senior Associate Veolia Water BETA Group, Inc. 825 West Water Street 701 George Washington Hwy Lincoln, Rhode Island 02865 Taunton, MA 02780 RE: City of Taunton, MA WWTF Phase 2 Improvements Contract S-2022-1 Shop Drawing No. 11376-02 REV 0 - Fine Bubble Aeration Equipment - O&M Manual

BETA COMMENTS:

<u>Item</u>	Action Code	Description/Comments
1	3	 Fine Bubble Aeration Equipment O&M Manual 1. Incorporate changes from comments on equipment shop drawing. a. Design and supply sheet should read 12"x8" 304L Stainless Steel Drop Pipe for Aeration Zone 1 to match layout plan and section drawings. b. Aerobic Zone 2 headloss table indicates 6" SS top of drop to transition connection, this should be 8" SS to match design and supply sheet and layout plan and section drawings. 2. Testing, Startup and Training Documentation shall be provided following startup and testing.
1 - No	<u>1 Codes</u> Exception Taken ike Corrections N	 EDI Response 1a. EDI has revised the Design and Supply to comments made. 1b. EDI has revised the Head loss calculation for Aerobic Zone 2 to comments made. 2. EDI has added an Appendix section at the end of the manual to add the Field Service Reports when completed.

- 2 Make Corrections Noted
- 3 Amend and Resubmit
- 4 Rejected, See Remarks
- a. Installation shall proceed only when Action Code is '1' or '2'.
- b. Submittals action coded '3' shall be resubmitted within time limit set in Contract.
- c. Review does not relieve Contractor from responsibility of compliance with the Contract Documents.

Installation, Operation, and Maintenance

For:

Taunton, MA – Improvements Phase 2 Specification Section 11376 EDI Project # 38277

Prepared For:

Ryan Murphy Hart Engineering Corporation 800 Scenic View Drive Cumberland, RI 02864 401-658-4600

Prepared By:

Tom Mallory Environmental Dynamics International 5601 Paris Road Columbia, MO 65202 +1-573-474-9456 tom.mallory@wastewater.com

Local Representative:

James Deluca Aqua Solutions 154 West Grove Street Middleboro, MA 02346 +1 617 923 3900 jdeluca@aquasolutionsinc.net

Date: May 31, 2023 RevA: November 10. 2023 This page intentionally left blank

Notice

This document and all information contained within is the property of Environmental Dynamics International. This document is submitted under a confidential relationship specifically for the recipient's use on a designated project. Reproduction of this document or use of its contents in whole or in part without the written permission of EDI is prohibited.

Project Special Notes

Submittal package contains detailed information on components furnished as well as installation and start-up guidelines. Operation and Maintenance Manuals will be provided at, or prior to, equipment delivery. Final O & M manuals will cover start-up, operation and maintenance procedures for the EDI Aeration-Mixing System and specific installation requirements not covered in Submittal Package.

Shipments shall be inspected for damage upon receipt. To file a claim against the freight company, a damage report must be submitted to EDI within 24 hours of delivery. A full inventory of shipped components shall be completed within 14 days of the receipt of shipment. Any deficiencies in the shipment that are clearly deemed to be the result of EDI will be reconciled by EDI when notified within this timeframe.

EDI will label all piping segments to match lateral layout drawing. The piping segments will be labeled with a sequence number that indicates that segment's position in the lateral run. Additionally, EDI will provide an arrow on the lateral piping. This arrow indicates the direction of airflow in the lateral segment. All arrows should point away from the header toward the lateral end at final installation.

Note: Contractor to confirm EDI Layout is suitable for installation and will <u>NOT</u> conflict with other process piping and/or structural components.

EDI's scope of supply begins for Aerobic 1 and 2 at the top of the stainless steel drop pipe with an 8" diameter 150# horizontal flange at 18' above concrete floor. Aerobic 3 and Swign at the top of the stainless steel drop pipe with a 6" diameter 150# horizontal flange at 18' above concrete floor Reference EDI Drawing(s) #167421. The drop pipe is to be supported by the contractor such that no downward force is transmitted to the aeration piping system. The flange fasteners to connect the drop pipe to the air header piping are by others.

EDI complies with the requirements of specification section <u>11376</u> with the following exceptions:

Part 2.07.A.1.a Due to increase diffuser submergence since the design stage, the discharge pressure will be increased to 8.7 psig.

Table of Contents

EDI Warranty Statement	1
Commissioning Statement	2
Equipment Supply	3
Aeration System Equipment	3
aeration zone 1	3
aeration zone 2	3
aeration zone 3	3
aeration Swing zone	4
Manufactureres Field Services	4
Spare Parts	4
Exclusions	4
General requirements	4
MiniPanel MP3 Specification Sheet	5
Headloss Calculations	6
Headloss Aerobic 1	6
Headloss Aerobic 2	10
Headloss Aerobic 3	13
Headloss Aerobic-Swing 1	16
Headloss Aerobic-Swing 2	18
EDI Aeration Equipment	21
Storage Instructions	21
Receiving Inspection	21
Pre-Installation Storage Requirements	21
Post-Installation Storage Requirements for a Flexible Membrane System	21
Installation Instructions	23
Air Piping Installation	23
Fixed Grid Installation Guide	24
Stainless Steel Coupling Clamp Installation	31
Flange Installation	32
Pipe Support Installation Instructions	34

Rigid & Simple Pipe Support Installation	34
Adhesive Anchor Installation Guide	37
SDM MiniPanel and Magnum Installation	38
Installation of Alignment Plug (if provided)	38
Installation of Diffuser Assemblies	38
Leveling of Diffusers	39
Purge Installation Instructions	40
Manual Purge Installation Instructions	40
Start-Up Instructions	41
General Aeration/Mixing Systems Start-Up Instructions	41
General Air Piping Inspection	41
Blower Components	41
Initial System Start-Up	41
Active Aeration Inspection	42
Optional Water Flush and Air Purge Cleaning of Piping	43
Water Flush Cleaning	43
Air Purge Cleaning	43
Safety Considerations	45
General Safety Considerations	45
Personal Protection Measures	45
Personal Protective Equipment	45
Confined Space Hazard	45
Operation Instructions	47
Description of the Aeration-Mixing System	47
Normal Operation of the Aeration System	47
Shutdown Conditions	47
Normal Operation of the Diffuser Unit	47
Normal Operation of the Purge Assembly	48
Preventive Maintenance	49
Maintenance Schedule	49
In Situ Acid Cleaning	49
Membrane Protection	49

Corrective Maintenance	51
Troubleshooting	51
Replacing Diffuser Assembly	51
EDI Services	53
Aeration Works	53
Service Department	54
Diffuser Express	55
EDI Layout Drawings	57
Sheets and Views	57
167421-Overall	57
167421-Aerobic 1 Layout	58
167421-Aerobic 1 Section A	59
167421-Aerobic 2 Layout	60
167421-Aerobic 2 Section B	61
167421-Aerobic 3 Layout	62
167421-Aerobic 3 Section C	63
167421-Aerobic Swing1 Layout	64
167421-Aerobic Swing 1 Section D	65
167421-Aerobic Swing 2 Layout	66
167421-Aerobic Swing 2 Section E	67
EDI Layout Drawing Details	69
25945_Trans Conn	69
30234_Vanstone Flange	70
128093_Diffuser	71
139070_diffuser end support	72
143301_rigid	73
143312_simple	74
162689_Purge	75
Appendix: Field Service Reports and Training	77

Mechanical – Parts Only, no Labor Warranty Statement

EDI Project No. 38277 - MA, Taunton

This warranty provided by Environmental Dynamics International Inc., (EDI) is limited to the terms set forth in this Statement. All other warranties expressed or implied are excluded and disclaimed in their entirety. EDI gives no other warranty of any kind, nature, or description, expressed or implied, other than the limited warranties set forth herein, and this warranty exclusion includes but is not limited to warranties of merchantability and warranties of fitness for a particular purpose, both of which are excluded and disclaimed in their entirety. Equipment manufactured by EDI is warranted to be free from defects in materials and workmanship as applicable;

- (a) Twelve (12) months from startup of the equipment or eighteen (18) months from shipment, whichever occurs first.
- (b) Installed equipment requiring Substantial Completion or Owner Acceptance Certificate; thirteen (13) months from startup of the equipment or eighteen (18) months from shipment, whichever occurs first, exclusive of certificate issuance.

All equipment / systems must be stored, installed, operated, and maintained according to the Installation, Operation and Maintenance Manual (IO&M) provided.

Claims for damaged, improper material or for shortages upon delivery will not be allowed unless written notice, specifying the nature and extent of the damage or shortage, is received to EDI within fourteen (14) days from offloading. If the damage or shortage is of such a nature that it would not be reasonably discovered until the material is assembled and/or erected as a finished product, then the fourteen (14) days will commence from the date of assembly and/or erection.

The responsibility of EDI is limited to the cost of the defective equipment. EDI shall not be liable for any indirect, special, consequential, liquidated damages or penalties relating to the goods covered by or the transaction giving rise to this warranty.

Defective part(s) shall be remedied by repair or replacement of the defective part(s) only shipped freight included, FOB original shipping point¹. Costs incurred by EDI (on or off site)² shall be reimbursed by the Purchaser / Owner³ should EDI find a deficiency to not be due to equipment covered by this warranty. Defective is defined as faulty or deficient; to the project specifications, or to the purpose(s)/operation(s) it was originally designed for. The part design itself can evolve and physically transform from upgraded engineering modifications, but this physical transformation has no effect on the functionality of the part. The warranty therefore remains unaffected.

The following are excluded from this warranty, but shall not be considered to be limiting to other exclusions: cleaning and de-watering, labor⁴, equipment manufactured by others⁵, process and performance related to system design or biological process performance, decomposition, abnormal wear and/or damage caused by site conditions; chemical action, chemical precipitate, physical abrasion points or abrasive materials, water velocities greater than 2 ft/sec or as approved by EDI, blunt trauma forces, faulty or substandard structural components, faulty or inadequate maintenance/operation⁶, equipment and services provided under a contract which is in a current state of default due to non-payment⁷. EDI exclusively assumes no responsibility of expense or liability for (a) equipment repairs made or contracted by Purchaser or Owner without EDI's written consent; (b) modifications to any of EDI's equipment made by others which are not approved in advance and in writing by EDI; (c) failure of the Owner to promptly notify EDI of observed defects and or deficiencies which occur during the warranty period; (d) field modifications to allow for removal or replacement of EDI components.

⁷ Default due to non-payment shall not include EDI approved holdbacks.

5601 Paris Rd, Columbia, MO 65202 +1 573 474 9456 | www.wastewater.com

¹ FOB original shipping point indicates the point of which risk of loss passes

² Cost incurred include shall not be limited to; travel, housing, labor, and materials; that have been expended to research and repair such deficiency

³ Responsible party for the equipment at the time of the warranty claim; generally dictated by project status, pre (Purchaser) or post (Owner) project hand over.

⁴ Accessing/uninstalling/replacing/reinstalling any parts.

⁵ EDI does not warranty equipment manufactured by others. "By others" includes but is not limited to blowers, DO probes, electrical panels, engines, motors, any electrical apparatus, etc. Such equipment bears warranties of the respective manufacturers. Labor costs associated with warranty repairs of equipment manufactured by others shall be borne by others

⁶ Please refer to your EDI IO&M manual for maintenance and operation instructions.

MANUFACTURING COMMISSIONING SERVICES STATEMENT

Environmental Dynamics International commissioning services provide verification of general conformance¹ to the manufacturer's installation instructions only. EDI cannot audit 100% of all work performed by others and thereby cannot guarantee the work to fully meet the requirements of the Manufacturer's installation instruction.

EDI commissioning services do not provide an expressed nor implied warranty for the installation contractor's work or materials furnished or labor provided by any other contractor, subcontractor or material supplier.

Only those systems installed by Aeration Works (EDI's installation division), or by contractors or subcontractors working directly for and directly under EDI carry a full manufacturer's certification of installation.

Installation by others DOES NOT void EDI's mechanical warranty. Installation labor and services performed by others shall be covered by the warranty of the entity providing such labor and services.

Failure by the installer to fully meet the Manufacturers installation requirements may cause equipment and or performance failure. ²Common installation errors not covered by the Manufacturers mechanical warranty include, but are not limited to; unseen anchor bolt installation error, internal materials damage (IE: metal hammer to wedges, over torqued fittings and hardware), use of improper ballast concrete material, improper air line cut lengths, poor quality welds, orifice installation error, non-stainless steel components installed within a stainless steel system, improper super strut installation and any installation error which may not be visible at the time of commissioning services due to submersion.

Scheduling Services:

EDI requires a minimum three (3) week notice for scheduling of commissioning services. Providing notice of less than three (3) weeks may result in an expediting fee.

Cancelling Services:

Amending a previously scheduled service trip may result in additional charges due to travel arrangements and fees.

Suspension of services:

EDI reserves the right to suspend scheduling; or cancel previously scheduled commissioning services on accounts which are in default for non-payment. In the event previously scheduled commissioning services must be cancelled due to non-payment, additional charges due to travel arrangements and fees may apply.

Services Contact:

Raylene Douglas, Services Manager Via email at servicedept@wastewater.com or via telephone at 573.474.9456

¹ General conformance for the purpose of this statement is defined as an audit of worked performed.

² System adjustments made per EDI's instruction during or subsequent to Commissioning Services are the responsibility of the installing contractor. Failure to comply with these instructions may result in a voided mechanical warranty.

Aeration System Equipment

Specification Section 11376

Design and Supply of all in-tank FlexAir[™] aeration equipment required to make a fully functioning system (as per specifications and drawings) <u>after</u> the horizontal flange at the top of each drop pipe and including all inwater components including but not limited to:

aeration zone 1 (equipment scope for 1 treatment train, equipment supplied for 2 trains total)

- 1 12"x8" 304L Stainless Steel Drop Pipe. Drop pipe provided with flanged top connection and plain end bottom. The drop pipe is to be supported by the contractor such that no downward force is transmitted to the aeration piping system.
- 1 8" 304 Stainless Steel Coupling. Coupling joins plain ends of SS drop and PVC manifold.
- 1 8" Schedule 40 PVC Air Distribution Manifold Assembly. Assembly provided factory assembled and shipped in sub-assemblies. Assembly includes flanged connections at all field joints, flanged header connections and stainless steel flange fasteners.
- 1 Purge System.
- 4 6" Schedule 40 PVC Air Header Assembly. Assembly provided factory assembled and shipped in subassemblies. Assembly includes flanged connections at all field joints, diffuser outlet ports, removable end cap and stainless steel flange fasteners.
- Lot 304 Stainless Steel Pipe Support. Anchor bolts included.
- 296 FlexAir MiniPanel MP3 Diffuser Assembly. Assembly includes two diffuser units and patented Spectrum Diffuser Mount.

aeration zone 2 (equipment scope for 1 treatment train, equipment supplied for 2 trains total)

- 1 10"x8" 304L Stainless Steel Drop Pipe. Drop pipe provided with flanged top connection and plain end bottom. The drop pipe is to be supported by the contractor such that no downward force is transmitted to the aeration piping system.
- 1 8" 304 Stainless Steel Coupling. Coupling joins plain ends of SS drop and PVC manifold.
- 1 8" Schedule 40 PVC Air Distribution Manifold Assembly. Assembly provided factory assembled and shipped in sub-assemblies. Assembly includes flanged connections at all field joints, flanged header connections and stainless steel flange fasteners.
- 1 Purge System.
- 4 6" Schedule 40 PVC Air Header Assembly. Assembly provided factory assembled and shipped in subassemblies. Assembly includes flanged connections at all field joints, diffuser outlet ports, removable end cap and stainless steel flange fasteners.
- Lot 304 Stainless Steel Pipe Support. Anchor bolts included.
- 176 FlexAir MiniPanel MP3 Diffuser Assembly. Assembly includes two diffuser units and patented Spectrum Diffuser Mount.

aeration zone 3 (equipment scope for 1 treatment train, equipment supplied for 2 trains total)

- 1 8"x6" 304L Stainless Steel Drop Pipe. Drop pipe provided with flanged top connection and plain end bottom. The drop pipe is to be supported by the contractor such that no downward force is transmitted to the aeration piping system.
- 1 6" 304 Stainless Steel Coupling. Coupling joins plain ends of SS drop and PVC manifold.
- 1 6" Schedule 40 PVC Air Distribution Manifold Assembly. Assembly provided factory assembled and shipped in sub-assemblies. Assembly includes flanged connections at all field joints, flanged header connections and stainless steel flange fasteners.
- 1 Purge System.
- 4 6" Schedule 40 PVC Air Header Assembly. Assembly provided factory assembled and shipped in subassemblies. Assembly includes flanged connections at all field joints, diffuser outlet ports, removable end cap and stainless steel flange fasteners.
- Lot 304 Stainless Steel Pipe Support. Anchor bolts included.
- 120 FlexAir MiniPanel MP3 Diffuser Assembly. Assembly includes two diffuser units and patented Spectrum Diffuser Mount.

- 1 6" 304L Stainless Steel Drop Pipe. Drop pipe provided with flanged top connection and plain end bottom. The drop pipe is to be supported by the contractor such that no downward force is transmitted to the aeration piping system.
- 1 6" 304 Stainless Steel Coupling. Coupling joins plain ends of SS drop and PVC manifold.
- 1 6" Schedule 40 PVC Air Distribution Manifold Assembly. Assembly provided factory assembled and shipped in sub-assemblies. Assembly includes flanged connections at all field joints, flanged header connections and stainless-steel flange fasteners.
- 1 Purge System.
- 4 4" Schedule 40 PVC Air Header Assembly. Assembly provided factory assembled and shipped in subassemblies. Assembly includes flanged connections at all field joints, diffuser outlet ports, removable end cap and stainless-steel flange fasteners.
- Lot 304 Stainless Steel Pipe Support. Anchor bolts included.
- 76 FlexAir MiniPanel MP3 Diffuser Assembly. Assembly includes two diffuser units and patented Spectrum Diffuser Mount.

Swing zone 2 (equipment scope for 1 treatment train, equipment supplied for 2 trains total)

- 1 4"x6" 304L Stainless Steel Drop Pipe. Drop pipe provided with flanged top connection and plain end bottom. The drop pipe is to be supported by the contractor such that no downward force is transmitted to the aeration piping system.
- 1 6" 304 Stainless Steel Coupling. Coupling joins plain ends of SS drop and PVC manifold.
- 1 6" Schedule 40 PVC Air Distribution Manifold Assembly. Assembly provided factory assembled and shipped in sub-assemblies. Assembly includes flanged connections at all field joints, flanged header connections and stainless-steel flange fasteners.
- 1 Purge System.
- 4 6" Schedule 40 PVC Air Header Assembly. Assembly provided factory assembled and shipped in subassemblies. Assembly includes flanged connections at all field joints, diffuser outlet ports, removable end cap and stainless-steel flange fasteners.
- Lot 304 Stainless Steel Pipe Support. Anchor bolts included.
- 51 FlexAir MiniPanel MP3 Diffuser Assembly. Assembly includes two diffuser units and patented Spectrum Diffuser Mount.

Manufacturer's Field Services

• Start-up, commissioning, and initial training combined with other supplied equipment as per specifications (allowance of 3 trips with a total of 6 days on site)

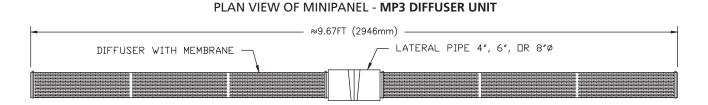
Spare Parts

- 15 FlexAir MiniPanel MP3 Diffuser Assembly. Assembly includes two diffuser units and patented Spectrum Diffuser Mount.
- 50 FlexAir MiniPanel MP3 Membrane sleeves and clamps.

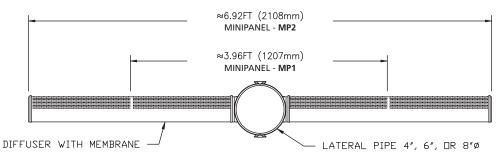
Exclusions

General requirements

- Receiving/off-loading and secure on-site storage of all equipment
- Installation of all supplied equipment, including labor and materials


- Fits 4", 6", 8", 110 mm and 160 mm air piping—plastic or stainless steel
- PVC construction for maximum chemical & UV resistance, and optional CPVC for maximum temperature resistance
- NanoPore[™] and MicroPore[™] perforation options available to match oxygen transfer, airflow and operating pressure requirements
- Simplex (single-arm) and Duplex (two-arm) configurations possible

Horizontal projected diffuser area for maximum OTE performance. System geometry supports high-density installations of over 65% floor coverage


MP1, MP2, & MP3

FlexAir[™] MiniPanel

- Non-buoyant & cantilever design for reduced stress on mounting connections and for water cooling
- Advanced technology premium-quality membranes available in EPDM, polyurethane, PTFE Matrix™ and others

SIDE VIEW OF MINIPANEL - MP1 & MP2 DIFFUSER UNIT

		/IETRIC		ENGLISH							
Diffuser Perforatio	Perforation Type	Design Airflow	Active Surface Area	Operating Buoyancy	Dry Weight	Diffuser Type	Perforation Type	Design Airflow	Active Surface Area	Operating Buoyancy	Dry Weight
	туре	m³ _N /h	m²	kg	kg	Туре	туре	scfm	ft²	lb	lb
MP1	Nano	0–4	.082	1.18	2.13	MP1	Nano	0–2.5	.88	2.6	4.7
	Micro	0–10	.082	1.18	2.13		Micro	0-6.5	.88	2.6	4.7
MP2	Nano	0–8	.164	1.74	3.42	MP2	Nano	0–5	1.76	3.85	7.55
	Micro	0–20	.164	1.74	3.42		Micro	0–13	1.76	3.85	7.55
MP3	Nano	0-13	.246	2.29	4.71	MD2	Nano	0-8	2.64	5.05	10.4
IVIES	Micro	0–32	.246	2.29	4.71	MP3	Micro	0–20	2.64	5.05	10.4

* Values listed are per tube unless noted

- * For high-capacity units, active area & air capacity doubled.
- Optimum oxygen transfer efficiency is achieved when operating in the middle to low end of the airflow range.
- The approximate operating pressure of the diffuser at the mid-range is 13 to 16 inches (3.2-4.0 kPa).
- Operating the unit at the high end of the range will result in reduced performance and increased operating pressure.
- Use the maximum airflow value for short-term operations such as peak loads or system maintenance.
- Short-term operation (peak conditions) up to 2x design airflow. Page 5

		Aer	ation/Mixing S	System Headloss Calcula	ations			Ê
Project Name: 7	faunton, MA			Project #:	38277	Date:	23-Feb-23	-un
Basin: A	Aerobic 1					Rev:	2.76	A Nexom BRAN
Sy	ystem Design Con	ditions		Estimated System Pressures & Uniformity				
Г	Minimum	Design	Maximum		Minimum	Design	Maximum	1
	Airflow	Airflow	Airflow		Airflow	Airflow	Airflow	
	(scfm)	(scfm)	(scfm)	Header Loss	0.63	1.07	2.24	(inwc)
Total System:	1132	1510	2264	+ Lateral Loss	0.31	0.51	1.04	(inwc)
Per Diffuser Unit:	1.91	2.55	3.82	Total Piping Loss	0.95	1.58	3.28	(inwc)
				Membrane Loss	8.62	9.04	9.87	(inwc)
Diffuser Sub	mergence Depth:	18.36	(ft)	Orifice Loss	0.18	0.38	0.99	(inwc)
Quantity	of Diffuser Units:	592		Liquid Depth	220.32	220.32	220.32	(inwc)
Active Surface Area: 2.64 (ft ²)		(ft^2)	*Operating Pressure	8.30	8.35	8.45	(psig)	
	ranes per Orifice:	1		**Uniformity	73.6%	77.9%	80.4%	J
(Orifice Diameter:	0.5000	(in)		* - at	Top of Drop		

The pipe segments analyzed have the path of highest resistance to airflow. "Equivalent Length" refers to the pipe segment length plus the equivalent length of pipe due to fittings/valves (based on Crane Company data).

Lateral loss is pressure loss along the lateral piping, measured between the first and last diffusers on the lateral.

The airflow capacity of each MiniPanel diffuser unit in this application is 20 (scfm)

Operating the diffuser at the high end of the flow range will result in reduced performance and increased operating pressure. Use the maximum airflow range for short term operations such as peak loads or system maintenance.

Uniformity is a quantitative measure of the variation in flow throughout the system. The diffuser with airflow furthest from the design point is used for calculation:

			Piping Sys	tem Headloss (Calculations							
		Equivalent		Mini	mum	Des	esign Maximum					
Piping	Type Of	Length	Diffusers	Flow	Loss	Flow	Loss	Flow	Loss			
Segment	Piping	(ft)	Bypassed	(scfm)	(inwc)	(scfm)	(inwc)	(scfm)	(inwc)			
op of Drop to Trans Con	SS 8" Sch10	13.00	0	1132.1	0.161	1509.5	0.273	2264.3	0.577			
Trans Conn to L2	PVC 8" Sch40	31.31	296	1132.1	0.473	1509.5	0.797	2264.3	1.667			
L2 to L1	PVC 8" Sch40	52.90	148	526.0	0.201	697.2	0.333	1033.6	0.676			
L1 to D74	PVC 6" Sch40	2.50	2	255.5	0.010	338.5	0.016	499.0	0.032			
D74 to D73	PVC 6" Sch40	1.00	2	251.8	0.004	333.7	0.006	491.9	0.013			
D73 to D72	PVC 6" Sch40	1.00	2	248.2	0.004	328.9	0.006	484.7	0.012			
D72 to D71	PVC 6" Sch40	1.00	2	244.6	0.004	324.1	0.006	477.6	0.012			
D71 to D70	PVC 6" Sch40	1.00	2	241.0	0.004	319.3	0.006	470.5	0.012			
D70 to D69	PVC 6" Sch40	1.00	2	237.4	0.003	314.5	0.006	463.4	0.011			
D69 to D68	PVC 6" Sch40	1.00	2	233.8	0.003	309.8	0.005	456.3	0.011			
D68 to D67	PVC 6" Sch40	1.00	2	230.2	0.003	305.0	0.005	449.3	0.011			
D67 to D66	PVC 6" Sch40	1.00	2	226.6	0.003	300.3	0.005	442.3	0.010			
D66 to D65	PVC 6" Sch40	1.00	2	223.1	0.003	295.5	0.005	435.2	0.010			
D65 to D64	PVC 6" Sch40	1.00	2	219.5	0.003	290.8	0.005	428.2	0.010			
D64 to D63	PVC 6" Sch40	1.00	2	215.9	0.003	286.1	0.005	421.3	0.010			
D63 to D62	PVC 6" Sch40	1.00	2	212.4	0.003	281.4	0.005	414.3	0.009			
D62 to D61	PVC 6" Sch40	1.00	2	208.9	0.003	276.7	0.004	407.4	0.009			
D61 to D60	PVC 6" Sch40	1.00	2	205.3	0.003	272.1	0.004	400.4	0.009			
D60 to D59	PVC 6" Sch40	1.00	2	201.8	0.003	267.4	0.004	393.5	0.008			
D59 to D58	PVC 6" Sch40	1.00	2	198.3	0.002	262.7	0.004	386.6	0.008			
D58 to D57	PVC 6" Sch40	1.00	2	194.7	0.002	258.1	0.004	379.7	0.008			
D57 to D56	PVC 6" Sch40	1.00	2	191.2	0.002	253.4	0.004	372.9	0.008			
D56 to D55	PVC 6" Sch40	1.00	2	187.7	0.002	248.8	0.004	366.0	0.007			
D55 to D54	PVC 6" Sch40	1.00	2	184.2	0.002	244.1	0.004	359.2	0.007			
D54 to D53	PVC 6" Sch40	1.00	2	180.7	0.002	239.5	0.003	352.3	0.007			
D53 to D52	PVC 6" Sch40	1.00	2	177.2	0.002	234.9	0.003	345.5	0.007			
D52 to D51	PVC 6" Sch40	1.00	2	173.8	0.002	230.3	0.003	338.7	0.006			
D51 to D50	PVC 6" Sch40	1.00	2	170.3	0.002	225.7	0.003	331.9	0.006			
D50 to D49	PVC 6" Sch40	1.00	2	166.8	0.002	221.1	0.003	325.1	0.006			
D49 to D48	PVC 6" Sch40	1.00	2	163.3	0.002	216.5	0.003	318.3	0.006			
D48 to D47	PVC 6" Sch40	1.00	2	159.9	0.002	211.9	0.003	311.6	0.006			

D47 to D46	PVC 6" Sch40	1.00	2	156.4	0.002	207.3	0.003	304.8	0.005
D46 to D45	PVC 6" Sch40	1.00	2	152.9	0.002	202.7	0.003	298.1	0.005
D45 to D44	PVC 6" Sch40	1.00	2	149.5	0.002	198.2	0.002	291.3	0.005
D44 to D43	PVC 6" Sch40	1.00	2	146.0	0.001	193.6	0.002	284.6	0.005
D43 to D42	PVC 6" Sch40	1.00	2	142.6	0.001	189.0	0.002	277.9	0.005
D42 to D41	PVC 6" Sch40	1.00	2	139.1	0.001	184.5	0.002	271.2	0.004
D41 to D40	PVC 6" Sch40	1.00	2	135.7	0.001	179.9	0.002	264.5	0.004
D40 to D39	PVC 6" Sch40	1.00	2	132.3	0.001	175.4	0.002	257.8	0.004
D39 to D38	PVC 6" Sch40	1.00	2	128.8	0.001	170.8	0.002	251.1	0.004
D38 to D37	PVC 6" Sch40	1.00	2	125.4	0.001	166.3	0.002	244.4	0.004
D37 to D36	PVC 6" Sch40	1.00	2	122.0	0.001	161.7	0.002	237.7	0.003
D36 to D35	PVC 6" Sch40	1.00	2	118.5	0.001	157.2	0.002	231.0	0.003
D35 to D34	PVC 6" Sch40	1.00	2	115.1	0.001	152.7	0.002	224.4	0.003
D34 to D33	PVC 6" Sch40	1.00	2	111.7	0.001	148.1	0.001	217.7	0.003
D33 to D32	PVC 6" Sch40	1.00	2	108.3	0.001	143.6	0.001	211.1	0.003
D32 to D31	PVC 6" Sch40	1.00	2	104.8	0.001	139.1	0.001	204.4	0.003
D31 to D30	PVC 6" Sch40	1.00	2	101.4	0.001	134.6	0.001	197.8	0.002
D30 to D29	PVC 6" Sch40	1.00	2	98.0	0.001	130.0	0.001	191.1	0.002
D29 to D28	PVC 6" Sch40	1.00	2	94.6	0.001	125.5	0.001	184.5	0.002
D28 to D27	PVC 6" Sch40	1.00	2	91.2	0.001	121.0	0.001	177.9	0.002
D27 to D26	PVC 6" Sch40	1.00	2	87.8	0.001	116.5	0.001	171.2	0.002
D26 to D25	PVC 6" Sch40	1.00	2	84.4	0.001	112.0	0.001	164.6	0.002
D25 to D24	PVC 6" Sch40	1.00	2	81.0	0.001	107.5	0.001	158.0	0.002
D24 to D23	PVC 6" Sch40	1.00	2	77.5	0.000	103.0	0.001	151.4	0.002
D23 to D22	PVC 6" Sch40	1.00	2	74.1	0.000	98.4	0.001	144.7	0.001
D22 to D21	PVC 6" Sch40	1.00	2	70.7	0.000	93.9	0.001	138.1	0.001
D21 to D20	PVC 6" Sch40	1.00	2	67.3	0.000	89.4	0.001	131.5	0.001
D20 to D19	PVC 6" Sch40	1.00	2	63.9	0.000	84.9	0.001	124.9	0.001
D19 to D18	PVC 6" Sch40	1.00	2	60.5	0.000	80.4	0.001	118.3	0.001
D18 to D17	PVC 6" Sch40	1.00	2	57.1	0.000	75.9	0.000	111.7	0.001
D17 to D16	PVC 6" Sch40	1.00	2	53.7	0.000	71.4	0.000	105.1	0.001
D16 to D15	PVC 6" Sch40	1.00	2	50.3	0.000	66.9	0.000	98.5	0.001
D15 to D14	PVC 6" Sch40	1.00	2	46.9	0.000	62.4	0.000	91.9	0.001
D14 to D13	PVC 6" Sch40	1.00	2	43.5	0.000	57.9	0.000	85.3	0.001
D13 to D12	PVC 6" Sch40	1.00	2	40.2	0.000	53.4	0.000	78.7	0.000
D12 to D11	PVC 6" Sch40	1.00	2	36.8	0.000	48.9	0.000	72.1	0.000

D11 to D10	PVC 6" Sch40	1.00	2	33.4	0.000	44.4	0.000	65.5	0.000
D10 to D9	PVC 6" Sch40	1.00	2	30.0	0.000	39.9	0.000	58.9	0.000
D9 to D8	PVC 6" Sch40	1.00	2	26.6	0.000	35.4	0.000	52.3	0.000
D8 to D7	PVC 6" Sch40	1.00	2	23.2	0.000	31.0	0.000	45.7	0.000
D7 to D6	PVC 6" Sch40	1.00	2	19.8	0.000	26.5	0.000	39.1	0.000
D6 to D5	PVC 6" Sch40	1.00	2	16.4	0.000	22.0	0.000	32.5	0.000
D5 to D4	PVC 6" Sch40	1.00	2	13.0	0.000	17.5	0.000	25.9	0.000
D4 to D3	PVC 6" Sch40	1.00	2	9.6	0.000	13.0	0.000	19.3	0.000
D3 to D2	PVC 6" Sch40	1.00	2	6.2	0.000	8.5	0.000	12.7	0.000
D2 to D1	PVC 6" Sch40	1.00	2	2.8	0.000	4.0	0.000	6.2	0.000

		Aera	ation/Mixing S	System Headloss Calcula	ıtions			
Project Name: T	launton, MA			Project #:	Project #: 38277			- "U
Basin: A	Aerobic 2				A Nexom BRAND			
Sy	ystem Design Con	ditions			Estimated System Pressures & Uniformity			
_				_				_
	Minimum	Design	Maximum		Minimum	Design	Maximum]
	Airflow	Airflow	Airflow		Airflow	Airflow	Airflow	
L	(scfm)	(scfm)	(scfm)	Header Loss	0.27	0.45	0.94	(inwc)
Total System:	673.2	897.5	1346.3	+ Lateral Loss	0.12	0.21	0.42	(inwc)
Per Diffuser Unit:	1.91	2.55	3.82	Total Piping Loss	0.39	0.66	1.36	(inwc)
_				Membrane Loss	8.62	9.04	9.87	(inwc)
Diffuser Sub	omergence Depth:	18.36	(ft)	Orifice Loss	0.18	0.38	0.99	(inwc)
Quantity of	of Diffuser Units:	352		Liquid Depth	220.32	220.32	220.32	(inwc)
	ive Surface Area:		(ft^2)	*Operating Pressure		8.32	8.39	(psig)
	ranes per Orifice:			**Uniformity		85.5%	89.1%]
(Orifice Diameter:	0.5000	(in)		* - at	Top of Drop		

The pipe segments analyzed have the path of highest resistance to airflow. "Equivalent Length" refers to the pipe segment length plus the equivalent length of pipe due to fittings/valves (based on Crane Company data).

Lateral loss is pressure loss along the lateral piping, measured between the first and last diffusers on the lateral.

The airflow capacity of each MiniPanel diffuser unit in this application is 20 (scfm)

Operating the diffuser at the high end of the flow range will result in reduced performance and increased operating pressure. Use the maximum airflow range for short term operations such as peak loads or system maintenance.

Uniformity is a quantitative measure of the variation in flow throughout the system. The diffuser with airflow furthest from the design point is used for calculation:

			Piping Sys	tem Headloss (Calculations				
		Equivalent		Min	imum	Des	sign	Max	imum
Piping	Type Of	Length	Diffusers	Flow	Loss	Flow	Loss	Flow	Loss
Segment	Piping	(ft)	Bypassed	(scfm)	(inwc)	(scfm)	(inwc)	(scfm)	(inwc)
op of Drop to Trans Con	SS 8" Sch10	13.00	0	673.2	0.062	897.5	0.105	1346.3	0.221
Trans Conn to L2	PVC 8" Sch40	34.62	176	673.2	0.205	897.5	0.343	1346.3	0.714
L2 to L1	PVC 8" Sch40	52.90	88	326.8	0.086	434.4	0.142	648.6	0.291
L1 to D44	PVC 6" Sch40	2.50	2	161.7	0.004	214.9	0.007	320.5	0.015
D44 to D43	PVC 6" Sch40	1.30	2	158.0	0.002	209.9	0.004	313.1	0.007
D43 to D42	PVC 6" Sch40	1.30	2	154.3	0.002	205.0	0.003	305.6	0.007
D42 to D41	PVC 6" Sch40	1.30	2	150.5	0.002	200.0	0.003	298.2	0.007
D41 to D40	PVC 6" Sch40	1.30	2	146.8	0.002	195.1	0.003	290.8	0.006
D40 to D39	PVC 6" Sch40	1.30	2	143.1	0.002	190.1	0.003	283.4	0.006
D39 to D38	PVC 6" Sch40	1.30	2	139.4	0.002	185.2	0.003	276.1	0.006
D38 to D37	PVC 6" Sch40	1.30	2	135.6	0.002	180.2	0.003	268.7	0.006
D37 to D36	PVC 6" Sch40	1.30	2	131.9	0.002	175.3	0.003	261.3	0.005
D36 to D35	PVC 6" Sch40	1.30	2	128.2	0.001	170.4	0.002	254.0	0.005
D35 to D34	PVC 6" Sch40	1.30	2	124.5	0.001	165.5	0.002	246.6	0.005
D34 to D33	PVC 6" Sch40	1.30	2	120.8	0.001	160.5	0.002	239.3	0.004
D33 to D32	PVC 6" Sch40	1.30	2	117.1	0.001	155.6	0.002	232.0	0.004
D32 to D31	PVC 6" Sch40	1.30	2	113.4	0.001	150.7	0.002	224.7	0.004
D31 to D30	PVC 6" Sch40	1.30	2	109.7	0.001	145.8	0.002	217.4	0.004
D30 to D29	PVC 6" Sch40	1.30	2	106.0	0.001	140.9	0.002	210.1	0.004
D29 to D28	PVC 6" Sch40	1.30	2	102.3	0.001	136.0	0.002	202.7	0.003
D28 to D27	PVC 6" Sch40	1.30	2	98.6	0.001	131.1	0.002	195.5	0.003
D27 to D26	PVC 6" Sch40	1.30	2	94.9	0.001	126.2	0.001	188.2	0.003
D26 to D25	PVC 6" Sch40	1.30	2	91.3	0.001	121.3	0.001	180.9	0.003
D25 to D24	PVC 6" Sch40	1.30	2	87.6	0.001	116.4	0.001	173.6	0.003
D24 to D23	PVC 6" Sch40	1.30	2	83.9	0.001	111.5	0.001	166.3	0.002
D23 to D22	PVC 6" Sch40	1.30	2	80.2	0.001	106.7	0.001	159.1	0.002
D22 to D21	PVC 6" Sch40	1.30	2	76.5	0.001	101.8	0.001	151.8	0.002
D21 to D20	PVC 6" Sch40	1.30	2	72.9	0.001	96.9	0.001	144.5	0.002
D20 to D19	PVC 6" Sch40	1.30	2	69.2	0.001	92.0	0.001	137.3	0.002
D19 to D18	PVC 6" Sch40	1.30	2	65.5	0.000	87.1	0.001	130.0	0.002
D18 to D17	PVC 6" Sch40	1.30	2	61.8	0.000	82.3	0.001	122.7	0.001

D17 to D16	PVC 6" Sch40	1.30	2	58.2	0.000	77.4	0.001	115.5	0.001
D16 to D15	PVC 6" Sch40	1.30	2	54.5	0.000	72.5	0.001	108.2	0.001
D15 to D14	PVC 6" Sch40	1.30	2	50.8	0.000	67.6	0.000	101.0	0.001
D14 to D13	PVC 6" Sch40	1.30	2	47.1	0.000	62.8	0.000	93.7	0.001
D13 to D12	PVC 6" Sch40	1.30	2	43.5	0.000	57.9	0.000	86.5	0.001
D12 to D11	PVC 6" Sch40	1.30	2	39.8	0.000	53.0	0.000	79.2	0.001
D11 to D10	PVC 6" Sch40	1.30	2	36.1	0.000	48.2	0.000	72.0	0.001
D10 to D9	PVC 6" Sch40	1.30	2	32.5	0.000	43.3	0.000	64.8	0.000
D9 to D8	PVC 6" Sch40	1.30	2	28.8	0.000	38.4	0.000	57.5	0.000
D8 to D7	PVC 6" Sch40	1.30	2	25.1	0.000	33.6	0.000	50.3	0.000
D7 to D6	PVC 6" Sch40	1.30	2	21.5	0.000	28.7	0.000	43.0	0.000
D6 to D5	PVC 6" Sch40	1.30	2	17.8	0.000	23.8	0.000	35.8	0.000
D5 to D4	PVC 6" Sch40	1.30	2	14.1	0.000	19.0	0.000	28.5	0.000
D4 to D3	PVC 6" Sch40	1.30	2	10.4	0.000	14.1	0.000	21.3	0.000
D3 to D2	PVC 6" Sch40	1.30	2	6.8	0.000	9.2	0.000	14.1	0.000
D2 to D1	PVC 6" Sch40	1.30	2	3.1	0.000	4.4	0.000	6.8	0.000

		Aer	ation/Mixing S	System Headloss Calcula	ations			EAA
Project Name: 7	Project Name: Taunton, MA				38277	Date:	23-Feb-23	- '' (1)
Basin: A	Basin: Aerobic 3					Rev:	2.76	A Nexom BRAND
S	ystem Design Con	ditions		Estimated System Pressures & Uniformity				
Г	Minimum	Design	Maximum		Minimum	Design	Maximum	1
	Airflow	Airflow	Airflow		Airflow	Airflow	Airflow	
	(scfm)	(scfm)	(scfm)	Header Loss	0.43	0.72	1.51	(inwc)
Total System:	458.7	611.5	917.3	+ Lateral Loss	0.15	0.24	0.48	(inwc)
Per Diffuser Unit:	1.91	2.55	3.82	Total Piping Loss	0.58	0.96	1.99	(inwc)
_				Membrane Loss	8.62	9.04	9.87	(inwc)
Diffuser Sub	omergence Depth:	18.36	(ft)	Orifice Loss	0.13	0.23	0.50	(inwc)
Quantity	of Diffuser Units:	240		Liquid Depth	220.32	220.32	220.32	(inwc)
Act	Active Surface Area: 2.64 (ft ²)		*Operating Pressure	8.29	8.33	8.40	(psig)	
Memb	ranes per Orifice:	1		**Uniformity	78.3%	82.1%	85.0%	
	Orifice Diameter:	0.6250	(in)		* - at	Top of Drop		

The pipe segments analyzed have the path of highest resistance to airflow. "Equivalent Length" refers to the pipe segment length plus the equivalent length of pipe due to fittings/valves (based on Crane Company data).

Lateral loss is pressure loss along the lateral piping, measured between the first and last diffusers on the lateral.

The airflow capacity of each MiniPanel diffuser unit in this application is 20 (scfm)

Operating the diffuser at the high end of the flow range will result in reduced performance and increased operating pressure. Use the maximum airflow range for short term operations such as peak loads or system maintenance.

Uniformity is a quantitative measure of the variation in flow throughout the system. The diffuser with airflow furthest from the design point is used for calculation:

	Piping System Headloss Calculations												
		Equivalent		Min	imum	Des	sign	Maximum					
Piping	Type Of	Length	Diffusers	Flow	Loss	Flow	Loss	Flow	Loss				
Segment	Piping	(ft)	Bypassed	(scfm)	(inwc)	(scfm)	(inwc)	(scfm)	(inwc)				
op of Drop to Trans Con	SS 6" Sch10	13.00	0	458.7	0.115	611.5	0.194	917.3	0.408				
Trans Conn to L2	PVC 6" Sch40	28.23	120	458.7	0.314	611.5	0.527	917.3	1.097				
L2 to L1	PVC 6" Sch40	43.30	60	218.9	0.128	289.7	0.211	428.3	0.425				
L1 to D30	PVC 6" Sch40	2.50	2	108.7	0.002	143.8	0.004	212.4	0.007				
D30 to D29	PVC 6" Sch40	1.75	2	105.0	0.001	138.9	0.002	205.2	0.005				
D29 to D28	PVC 6" Sch40	1.75	2	101.3	0.001	134.1	0.002	198.0	0.004				
D28 to D27	PVC 6" Sch40	1.75	2	97.7	0.001	129.2	0.002	190.9	0.004				
D27 to D26	PVC 6" Sch40	1.75	2	94.0	0.001	124.4	0.002	183.7	0.004				
D26 to D25	PVC 6" Sch40	1.75	2	90.4	0.001	119.6	0.002	176.6	0.004				
D25 to D24	PVC 6" Sch40	1.75	2	86.7	0.001	114.7	0.002	169.4	0.003				
D24 to D23	PVC 6" Sch40	1.75	2	83.0	0.001	109.9	0.002	162.3	0.003				
D23 to D22	PVC 6" Sch40	1.75	2	79.4	0.001	105.1	0.001	155.2	0.003				
D22 to D21	PVC 6" Sch40	1.75	2	75.7	0.001	100.3	0.001	148.1	0.003				
D21 to D20	PVC 6" Sch40	1.75	2	72.1	0.001	95.4	0.001	141.0	0.002				
D20 to D19	PVC 6" Sch40	1.75	2	68.4	0.001	90.6	0.001	133.9	0.002				
D19 to D18	PVC 6" Sch40	1.75	2	64.8	0.001	85.8	0.001	126.8	0.002				
D18 to D17	PVC 6" Sch40	1.75	2	61.2	0.001	81.0	0.001	119.7	0.002				
D17 to D16	PVC 6" Sch40	1.75	2	57.5	0.000	76.2	0.001	112.6	0.002				
D16 to D15	PVC 6" Sch40	1.75	2	53.9	0.000	71.4	0.001	105.5	0.001				
D15 to D14	PVC 6" Sch40	1.75	2	50.2	0.000	66.6	0.001	98.4	0.001				
D14 to D13	PVC 6" Sch40	1.75	2	46.6	0.000	61.8	0.001	91.3	0.001				
D13 to D12	PVC 6" Sch40	1.75	2	43.0	0.000	57.0	0.000	84.2	0.001				
D12 to D11	PVC 6" Sch40	1.75	2	39.3	0.000	52.2	0.000	77.2	0.001				
D11 to D10	PVC 6" Sch40	1.75	2	35.7	0.000	47.4	0.000	70.1	0.001				
D10 to D9	PVC 6" Sch40	1.75	2	32.1	0.000	42.6	0.000	63.0	0.001				
D9 to D8	PVC 6" Sch40	1.75	2	28.4	0.000	37.8	0.000	56.0	0.000				
D8 to D7	PVC 6" Sch40	1.75	2	24.8	0.000	33.0	0.000	48.9	0.000				
D7 to D6	PVC 6" Sch40	1.75	2	21.2	0.000	28.2	0.000	41.8	0.000				
D6 to D5	PVC 6" Sch40	1.75	2	17.5	0.000	23.4	0.000	34.8	0.000				
D5 to D4	PVC 6" Sch40	1.75	2	13.9	0.000	18.6	0.000	27.7	0.000				
D4 to D3	PVC 6" Sch40	1.75	2	10.3	0.000	13.8	0.000	20.6	0.000				

D3 to D2	PVC 6" Sch40	1.75	2	6.6	0.000	9.0	0.000	13.6	0.000
D2 to D1	PVC 6" Sch40	1.75	2	3.0	0.000	4.2	0.000	6.5	0.000

		Aer	ation/Mixing S	System Headloss Calcula	ations			EAA.
Project Name:	Project Name: Taunton, MA				38277	Date:	- "U	
Basin:	Basin: Aerobic - Swing 1					Rev:	2.76	A Nexom BRAND
S	System Design Conditions				Estimated Sys	tem Pressures	& Uniformity	
[Minimum Airflow	Design Airflow	Maximum Airflow		Minimum Airflow	Design Airflow	Maximum Airflow]
	(scfm)	(scfm)	(scfm)	Header Loss		0.34	0.70	(inwc)
Total System:	290.7	387.6	581.4	+ Lateral Loss	0.04	0.07	0.15	(inwc)
Per Diffuser Unit:	1.91	2.55	3.82	Total Piping Loss	0.25	0.41	0.86	(inwc)
_				Membrane Loss	8.62	9.04	9.87	(inwc)
Diffuser Sub	omergence Depth:	18.36	(ft)	Orifice Loss	0.13	0.23	0.50	(inwc)
Quantity	of Diffuser Units:	152		Liquid Depth	220.32	220.32	220.32	(inwc)
	ive Surface Area:	2.64	(ft^2)	*Operating Pressure		8.31	8.36	(psig)
	ranes per Orifice:	1	4	**Uniformity		86.4%	90.4%	
	Orifice Diameter:	0.6250	(in)		* - at	Top of Drop		

The pipe segments analyzed have the path of highest resistance to airflow. "Equivalent Length" refers to the pipe segment length plus the equivalent length of pipe due to fittings/valves (based on Crane Company data).

Lateral loss is pressure loss along the lateral piping, measured between the first and last diffusers on the lateral.

The airflow capacity of each MiniPanel diffuser unit in this application is 20 (scfm)

Operating the diffuser at the high end of the flow range will result in reduced performance and increased operating pressure. Use the maximum airflow range for short term operations such as peak loads or system maintenance.

Uniformity is a quantitative measure of the variation in flow throughout the system. The diffuser with airflow furthest from the design point is used for calculation:

Piping System Headloss Calculations											
		Equivalent		Min	Minimum		Design		Maximum		
Piping	Type Of	Length	Diffusers	Flow	Loss	Flow	Loss	Flow	Loss		
Segment	Piping	(ft)	Bypassed	(scfm)	(inwc)	(scfm)	(inwc)	(scfm)	(inwc)		
Гор of Drop to Transitior	SS 6" Sch10	19.00	0	290.7	0.074	387.6	0.124	581.4	0.259		
Transition to L1	PVC 6" Sch40	26.23	76	290.7	0.129	387.6	0.215	581.4	0.446		
L1 to D20	PVC 6" Sch40	30.20	38	143.0	0.042	190.2	0.070	284.2	0.142		
D20 to D19	PVC 6" Sch40	0.92	2	71.1	0.000	94.7	0.001	141.7	0.001		
D19 to D18	PVC 6" Sch40	0.92	2	67.3	0.000	89.7	0.001	134.2	0.001		
D18 to D17	PVC 6" Sch40	0.92	2	63.5	0.000	84.7	0.001	126.7	0.001		
D17 to D16	PVC 6" Sch40	0.92	2	59.8	0.000	79.6	0.000	119.2	0.001		
D16 to D15	PVC 6" Sch40	0.92	2	56.0	0.000	74.6	0.000	111.7	0.001		
D15 to D14	PVC 6" Sch40	0.92	2	52.2	0.000	69.6	0.000	104.2	0.001		
D14 to D13	PVC 6" Sch40	0.92	2	48.4	0.000	64.6	0.000	96.7	0.001		
D13 to D12	PVC 6" Sch40	0.92	2	44.7	0.000	59.6	0.000	89.2	0.001		
D12 to D11	PVC 6" Sch40	0.92	2	40.9	0.000	54.6	0.000	81.8	0.000		
D11 to D10	PVC 6" Sch40	0.92	2	37.1	0.000	49.5	0.000	74.3	0.000		
D10 to D9	PVC 6" Sch40	0.92	2	33.3	0.000	44.5	0.000	66.8	0.000		
D9 to D8	PVC 6" Sch40	0.92	2	29.6	0.000	39.5	0.000	59.3	0.000		
D8 to D7	PVC 6" Sch40	0.92	2	25.8	0.000	34.5	0.000	51.8	0.000		
D7 to D6	PVC 6" Sch40	0.92	2	22.0	0.000	29.5	0.000	44.3	0.000		
D6 to D5	PVC 6" Sch40	0.92	2	18.2	0.000	24.5	0.000	36.9	0.000		
D5 to D4	PVC 6" Sch40	0.92	2	14.5	0.000	19.4	0.000	29.4	0.000		
D4 to D3	PVC 6" Sch40	0.92	2	10.7	0.000	14.4	0.000	21.9	0.000		
D3 to D2	PVC 6" Sch40	0.92	2	6.9	0.000	9.4	0.000	14.4	0.000		
D2 to D1	PVC 6" Sch40	0.92	2	3.1	0.000	4.4	0.000	6.9	0.000		

		Aer	ation/Mixing S	System Headloss Calcula	ations			E .
Project Name: 7	Project Name: Taunton, MA				38277	Date:	- "O	
Basin:	Basin: Aerobic - Swing 2					Rev:	2.76	A Nexom BRAND
S	System Design Conditions				Estimated Sys	tem Pressures	& Uniformity	
ſ	Minimum Airflow	Design Airflow	Maximum Airflow		Minimum Airflow	Design Airflow	Maximum Airflow	
	(scfm)	(scfm)	(scfm)	Header Loss		0.26	0.53	(inwc)
Total System:	195.1	260.1	390.1	+ Lateral Loss	0.00	0.00	0.01	(inwc)
Per Diffuser Unit:	1.91	2.55	3.82	Total Piping Loss	0.16	0.26	0.54	(inwc)
_				Membrane Loss	8.62	9.04	9.87	(inwc)
Diffuser Sub	omergence Depth:	18.36	(ft)	Orifice Loss	0.13	0.23	0.50	(inwc)
Quantity	of Diffuser Units:	102		Liquid Depth	220.32	220.32	220.32	(inwc)
Act	ive Surface Area:	2.64	(ft^2)	*Operating Pressure		8.30	8.35	(psig)
	ranes per Orifice:	1		**Uniformity		88.1%	92.5%	
	Orifice Diameter:	0.6250	(in)		* - at	Top of Drop		

The pipe segments analyzed have the path of highest resistance to airflow. "Equivalent Length" refers to the pipe segment length plus the equivalent length of pipe due to fittings/valves (based on Crane Company data).

Lateral loss is pressure loss along the lateral piping, measured between the first and last diffusers on the lateral.

The airflow capacity of each MiniPanel diffuser unit in this application is 20 (scfm)

Operating the diffuser at the high end of the flow range will result in reduced performance and increased operating pressure. Use the maximum airflow range for short term operations such as peak loads or system maintenance.

Uniformity is a quantitative measure of the variation in flow throughout the system. The diffuser with airflow furthest from the design point is used for calculation:

Piping System Headloss Calculations											
		Equivalent		Minimum		Design		Maximum			
Piping	Type Of	Length	Diffusers	Flow	Loss	Flow	Loss	Flow	Loss		
Segment	Piping	(ft)	Bypassed	(scfm)	(inwc)	(scfm)	(inwc)	(scfm)	(inwc)		
Op of Drop to Trans Con	SS 6" Sch10	36.18	0	195.1	0.069	260.1	0.115	390.1	0.238		
Trans Conn to L2	PVC 6" Sch40	35.20	72	195.1	0.085	260.1	0.142	390.1	0.292		
L2 to D15	PVC 6" Sch40	1.83	2	56.8	0.001	75.9	0.001	114.1	0.002		
D15 to D14	PVC 6" Sch40	1.83	2	53.0	0.000	70.8	0.001	106.5	0.002		
D14 to D13	PVC 6" Sch40	1.83	2	49.2	0.000	65.7	0.001	98.8	0.001		
D13 to D12	PVC 6" Sch40	1.83	2	45.3	0.000	60.6	0.001	91.2	0.001		
D12 to D11	PVC 6" Sch40	1.83	2	41.5	0.000	55.5	0.000	83.5	0.001		
D11 to D10	PVC 6" Sch40	1.83	2	37.7	0.000	50.4	0.000	75.9	0.001		
D10 to D9	PVC 6" Sch40	1.83	2	33.8	0.000	45.3	0.000	68.2	0.001		
D9 to D8	PVC 6" Sch40	1.83	2	30.0	0.000	40.2	0.000	60.6	0.001		
D8 to D7	PVC 6" Sch40	1.83	2	26.2	0.000	35.1	0.000	52.9	0.000		
D7 to D6	PVC 6" Sch40	1.83	2	22.3	0.000	30.0	0.000	45.3	0.000		
D6 to D5	PVC 6" Sch40	1.83	2	18.5	0.000	24.9	0.000	37.6	0.000		
D5 to D4	PVC 6" Sch40	1.83	2	14.7	0.000	19.8	0.000	30.0	0.000		
D4 to D3	PVC 6" Sch40	1.83	2	10.9	0.000	14.7	0.000	22.4	0.000		
D3 to D2	PVC 6" Sch40	1.83	2	7.0	0.000	9.6	0.000	14.7	0.000		
D2 to D1	PVC 6" Sch40	1.83	2	3.2	0.000	4.5	0.000	7.1	0.000		

This page intentionally left blank

Storage Instructions

Receiving Inspection

R.2015-06-17

(FOB EDI only)

Inspect shipments for damage upon receipt. The recipient/receiver is responsible for all damages. EDI offers to act on behalf of the recipient / receiver in filing a claim for damage incurred during shipment. To file a claim against the freight company, a damage report must be submitted to EDI within <u>24 hours</u> of delivery.

(FOB Jobsite only)

Inspect shipments for damage upon receipt. Any damages observed upon receipt must be noted with the freight company at the time of delivery <u>and</u> reported to EDI within <u>24 hours</u> of delivery. EDI will repair or replace damaged goods when notified within this notification period.

(Ex-Works only)

Inspect shipments for damage upon receipt. The recipient/receiver is responsible for all damages. To file a claim against the freight company, file a damage report directly with the shipping company.

Note

A full inventory of shipped components shall be completed within <u>14 days</u> of the receipt of shipment. Any deficiencies in the shipment that are clearly deemed to be the result of EDI will be reconciled by EDI when notified within this time period.

Pre-Installation Storage Requirements

R.2015-06-17

Pipe sections are furnished with end caps to minimize the entry of foreign materials (dirt, debris, etc.) into the pipe. Any foreign materials that are allowed to contaminate the pipe will need to be removed from the system prior to installation and start-up.

Piping Storage Requirements:

- Store Piping on a flat surface.
- Accessories must be protected from excessive moisture and rain.
- Storage is acceptable provided the ambient air temperature is below 140°F (60°C).
- Avoid impact loads and moisture when storing below 32°F (0°C).

Note

Piping and components are to be shaded from sunlight if stored for longer than 6 months.

Diffuser Storage Requirements:

- Boxes must be protected from excessive moisture and rain.
- Storage is acceptable provided the ambient air temperature is below 100°F (40°C).
- Shade or move Components indoors if the Ambient air temperature exceeds 100°F (40°C).
- Indoor storage is acceptable if the ambient air temperature does not exceed 125°F (52°C).

Note

Storage of diffuser membrane components shall be limited to one year.

Post-Installation Storage Requirements for a Flexible Membrane System

R.2020-05-12

If the reactor is drained and the aeration system is exposed for a short period of time (less than 4 weeks), the system shall be protected from foreign objects including but not limited to paint or weld splatter, falling objects, etc.

If SDM saddle mounted diffusers are being installed during large temperature swings (20°-40°) The Wedges should be loosely installed prior to Start-Up.

A gray fabric tarp should be suspended above the aeration system approximately 6" (150 mm) if the ambient air temperature is above 100°F (40°C).

Do not use any form of plastic to cover the aeration components. Plastic can create a hotter environment and/or fuse to the surface of the equipment.

When the ambient conditions drop below $40^{\circ}F$ ($4^{\circ}C$) plastic aeration components may become brittle, protect the system from falling objects and other impacts by covering the system with 4 feet of clean water. If temperatures drop below $32^{\circ}F$, the water must be deep enough to prevent ice from contacting the aeration system. If water must be added to the aeration basin when ice is present, ensure that no aeration components are encased in ice, before proceeding. Do not attempt to break aeration components free of any ice in the aeration basin. If the aeration system is idle for an extended period of time (greater than 4 weeks), the system should be submerged in approximately 4 feet of clean water provided the ambient air temperature is greater than $32^{\circ}F(0^{\circ}C)$.

If the ambient air temperature is below $32\,^{\circ}F$ (0 $^{\circ}C$), the water level may need to be increased so that the ice layer does not contact the aeration system.

When reactivating a system where ice exists, operate the system at a minimum airflow to avoid movement of ice and maintain this airflow condition until the ice is no longer present. The water level should never be lowered if ice is present. The weight of the ice may damage the system.

Installation Instructions

Air Piping Installation

R.2015-06-17

Confirm that the air piping is clean during installation of the laterals and swab out any debris found in the pipe before installing the diffuser units.

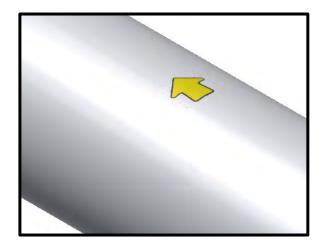
Dirt and debris may clog the diffuser unit requiring an extended start-up procedure and MAY require the Contractor to remove and replace diffuser unit at Contractor's expense.

If piping requires further cleaning before diffuser installation, Contractor may elect to perform water flush or air purge procedures described at the conclusion of this section.

Note

If either of these procedures are performed, do so before installing the diffusers.

Most types of plastic pipe will become brittle at temperatures below 32°F (0°C). Handle with care and avoid any impact loads to prevent damage.

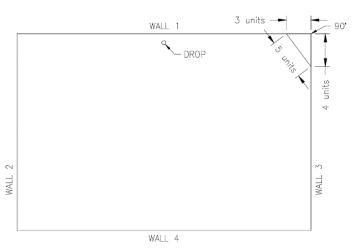

Assemble the aeration piping per the EDI layout drawing. Start with the drop pipe section to ensure proper drop pipe alignment.

Transition from the drop pipe to the air header piping is typically made by a stainless steel coupling clamp provided by EDI and a drop stub designed to be field cut to length and solvent welded to the air header by Contractor.

Pipe supports should be partially assembled with the bottom pipe strap, then placed under the drop pipe section for support. Pipe support assembly instructions are in the following section. See the EDI layout drawing for pipe support locations. Do not install the anchor bolts until the final alignment is established for the complete aeration grid.

The remaining air lateral piping shall be installed using this same method. All piping segments will be labeled with a sequence number that indicates that segment's position in the lateral run. EDI provides an arrow on the lateral piping. This arrow indicates the direction of airflow in the lateral segment. All arrows should point away from the header toward the lateral end at final installation.

Installation Guide


For FIXED GRID SYSTEMS

This guide provides an ordered process for the installation of the aeration system. The following information references a rectangular basin that contains aeration grids composed of subheader piping laid along one wall, and lateral piping extending perpendicularly off one side of the subheader piping. The installation order outlined and techniques identified can be applied to the installation of other aeration grid configurations in basins of varying shapes.

Set base line perimeter of basin

(assume virtual vertical wall for sloped side walls)

Objective: It is ideal to define straight lines with squared corners prior to installation due to imperfections of a finished basin. The lines will run along the base of the walls, and be positioned as close to the walls as possible while remaining straight the full length of the wall. The straight lines with squared corners (referred to as base line) will make dimensions consistent during the complete installation process.

The base line should be maintained during the installation

process for origin point of measurements. A marker at each end of the base line is suggested to ensure base line can be restored if lost.

- 1) Extend string or line laser level parallel to the base of wall 1 with drop location
 - a) Move string or line laser level laterally until it touches the innermost face of the wall (if virtual vertical wall is assumed, the innermost point of the toe of the sloped wall).
 - b) Set base line (secure string to floor or snap chalk line).
- 2) Extend string or line laser level parallel to wall 2 of the basin starting from the end of the base line set in step 1.
 - a) Move string or line laser level laterally until it touches the innermost face of the wall (if virtual vertical wall is assumed, the innermost point of the toe of the sloped wall).
 - b) Confirm the angle of the corner is 90° by using the 3:4:5 Triangle method¹.
 - c) Set base line (secure string to floor or snap chalk line).
- 3) Extend string or line laser level parallel to wall 3 of the basin starting from the other end of the base line set in step
 - a) Move string or line laser level laterally until it touches the innermost face of the wall (if virtual vertical wall is assumed, the innermost point of the toe of the sloped wall).
 - b) Confirm the angle of the corner is 90° by using the 3:4:5 Triangle method¹.

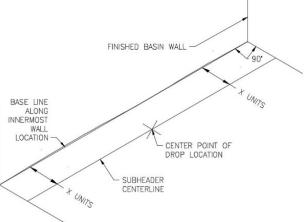
- c) Set base line (secure string to floor or snap chalk line).
- 4) Extend string or line laser level parallel to wall 4 of the basin starting from the end of the base line set in step 2 or 3.
 - a) Move string or line laser level laterally until it touches the innermost face of the wall (if virtual vertical wall is assumed, the innermost point of the toe of the sloped wall).
 - b) Confirm the angle of the corner is 90° by using the 3:4:5 Triangle method¹.
 - c) Set base line (secure string to floor or snap chalk line).
- 5) Measure the length and width of the base line perimeter (the distances should match the dimensions on the layout drawing ±6" [152mm]).

Place the drop pipes

- 1) Clear all dirt and debris from the air main.
 - a) Aeration blowers may be used (reference blower operating requirements before proceeding for minimum back pressure requirements and proper operation).
- 2) Connect the drop pipes to the existing piping (refer to additional instructions and details for proper installation).
 - a) Do not tighten the bolts at this time.
- 3) Install drop brace if required (refer to additional instructions and details for proper installation).
 - a) Reference layout drawings for placement of drop brace.
 - b) Do not tighten the bolts at this time.
- 4) Measure the drop locations from the set base lines (the distances should match the dimensions on the layout drawing ±6" [152mm]).

¹3:4:5 Triangle method can be used with U.S. Standard or Metric units to create a 90° angle.

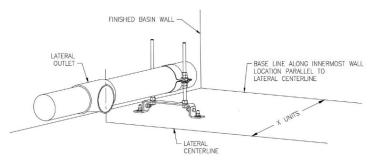
One unit = 1 inch or 1 foot or 1mm or 1cm or 1 meter

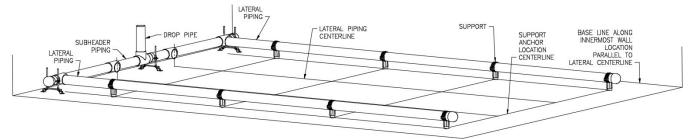

Mark 3 units from corner in one direction

Mark 4 units from corner in the other direction

Diagonal measurement between marks equals 5 units when the angle of the corner is 90°

Install subheader piping


- Mark the centerline of the subheader piping on the floor below the center point of the drop locations identified.
 - a) The centerline mark will run parallel with the perimeter base line, and measure the same distance from the perimeter base line along the full length of the subheader piping.
- 2) Measure and mark the support locations along the centerline mark.
 - a) Support location can be moved ±3" [76mm] to avoid obstructions (refer to layout drawings to determine the direction the support should move).


- b) Refer to additional instructions and details for proper placement of anchors relative to the centerline mark of the subheader piping.
- 3) Install anchors at marked locations (refer to additional instructions and details for proper installation).
- 4) Install subheader supports on anchors (refer to additional instructions and details for proper installation).
 - a) Leave top strap off of support for placement of piping.
- 5) Place subheader piping on supports with the drop outlet aligned with the drop pipe.
 - a) Contact EDI if aeration grid is closer than 6" [152mm] to basin walls or other obstructions in the basin.
- 6) Level subheader piping.
- 7) Adjust pipe elevation to the elevation identified on the layout drawings ±1/4" [6mm] horizontally.
- 8) Connect the drop pipe to the drop outlet on the subheader piping (refer to additional instructions and details for proper installation).
- 9) Tighten bolts of drop pipe connection (refer to additional instructions and details for proper installation).
- 10) Tighten bolts of drop brace if required (refer to additional instructions and details for proper installation).
- 11) Place the top strap on the support and tighten (refer to additional instructions and details for proper installation).

Install lateral piping

- Measure from the centerline of the lateral outlets to the established base line parallel to the lateral piping.
- 2) Measure the same distance at the other end of the base line parallel to the lateral piping.
- 3) Mark the centerline of the lateral piping on the floor.

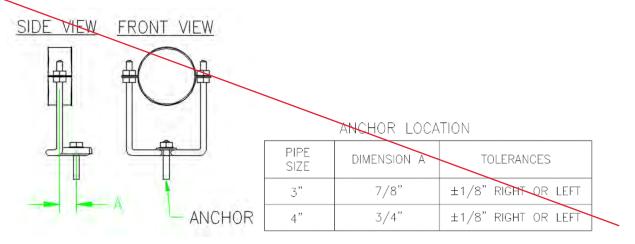
- a) If the distance from the base line to the lateral centerline is greater than 30' [9144mm], confirm the angle of the lateral centerline and subheader centerline is 90° by using the 3:4:5 Triangle method.
- 4) Connect 2 identical laterals (same support spacing along the lateral piping) to opposite ends of the subheader piping (refer to additional instructions and details for proper installation).
 - a) The distance between the lateral outlets used for connection should not be greater than 30' [9144mm].
 - b) Do not tighten the bolts at this time.
 - c) Contact EDI if aeration grid is closer than 6" [152mm] to basin walls or other obstructions in the basin.
- 5) Position the lateral supports along the lateral piping and mark anchor locations.
 - a) Refer to the layout drawings for support locations.
 - b) Support location can be moved ±3" [76mm] to avoid obstructions (support locations along the lateral piping will be identical for both laterals) (refer to layout drawings to determine the direction the support should move).

- c) Refer to additional instructions and details for proper placement of anchors relative to the centerline mark of the lateral piping.
- d) For aeration grids with dense diffuser placement along the lateral, it is suggested to install the diffusers on each side of the support location to ensure the support location is acceptable.
- 6) Mark the centerline of the support anchor location from one lateral to the other lateral.
 - a) The centerline will run parallel to the subheader piping and perpendicular to the lateral piping creating a grid pattern on the basin floor.
 - b) Refer to additional instructions and details for proper placement of anchors relative to the lateral centerline marks between the 2 laterals connected to the subheader piping.
- 7) Disconnect and move the 2 laterals and supports away from the lateral centerline.
- 8) Repeat steps 4 through 7 if necessary to mark anchor locations for lateral piping with different support locations.
- 9) Install anchors at marked locations (refer to additional instructions and details for proper installation).
- 10) Install lateral supports on anchors (refer to additional instructions and details for proper installation).
 - a) Leave top strap off of support for placement of piping.
- 11) Place lateral piping on supports and connect to subheader piping (refer to additional instructions and details for proper installation).
- 12) Place the top strap on the support and tighten (refer to additional instructions and details for proper installation).

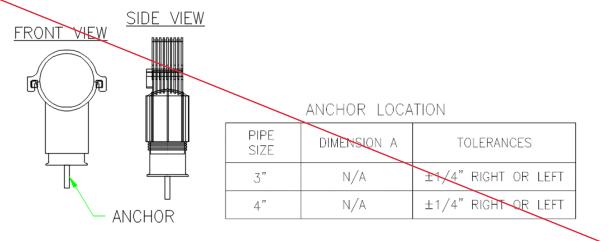
Install diffusers

1) Refer to additional instructions and details for proper installation.

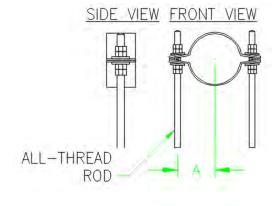
Install purge assembly

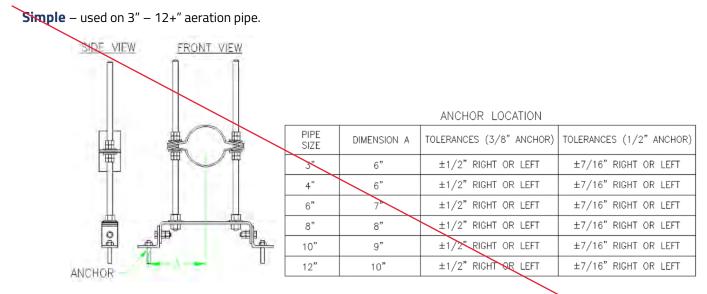

1) Refer to additional instructions and details for proper installation.

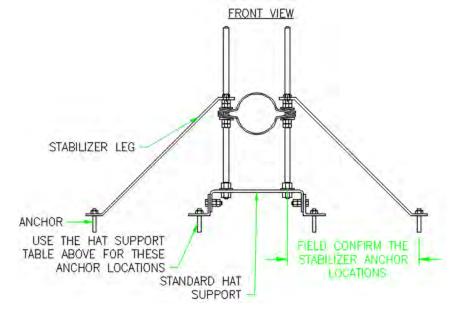
Support information

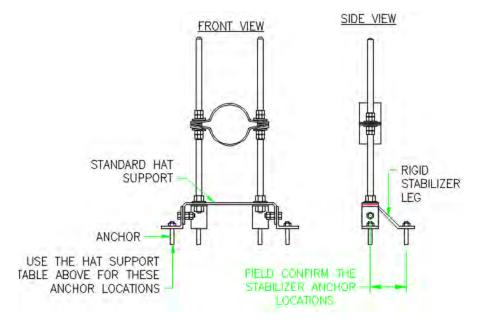

The determination of the proper support type was figured into the design of the aeration system. Use the support installation details when installing the supports and use the anchor manufacturer's instructions when installing the anchors.

There are 4 general support types:


Guide Support – used on 3" & 4" aeration pipe.


Super Strut (GFPP) – used on 3" & 4" aeration pipe.


Rod-in-Floor (RIF) – used on 3" – 12+" aeration pipe.


ANCHOR LOCATION			
PIPE SIZE	DIMENSION A	TOLERANCES	
3"	2 3/8"	±1/8" RIGHT OR LEFT	
4"	2 7/8"	±1/8" RIGHT OR LEFT	
6"	4 1/8"	$\pm 1/8$ " RIGHT OR LEFT	
8"	5 1/4"	±1/8" RIGHT OR LEFT	
10"	6 1/4"	±1/8" RIGHT OR LEFT	
12"	7 1/4"	±1/8" RIGHT OR LEFT	

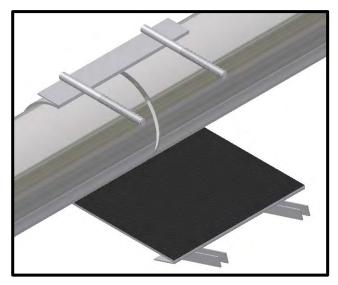
The Guide Support, RIF Support, & Simple Support may also include one or more stabilizer legs depending on seismic calculations and basin pressure. The anchor locations of these stabilizer legs should be field verified due to the c/l of pipe elevation and concrete floor elevation. Install stabilizer legs per the provided installation details and mark and drill the locations. For embedment depth and torqueing refer to the anchor manufacturer's instructions.

All systems contain a rigid type support close to the drop location on the subheader. There is a rigid type support for the Guide Support, RIF Support, & Simple Support. The supports may vary on the attachment location of the stabilizer legs to the support. Install stabilizer legs per the provided installation details and mark and drill the locations. For embedment depth and torqueing refer to the anchor manufacturer's instructions.

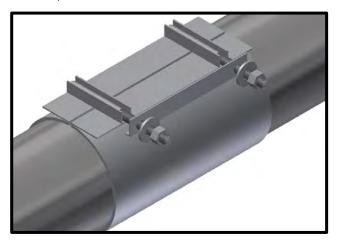
Please contact EDI for any questions or issues regarding the installation of pipe supports.

Stainless Steel Coupling Clamp Installation

R.2018-05-11

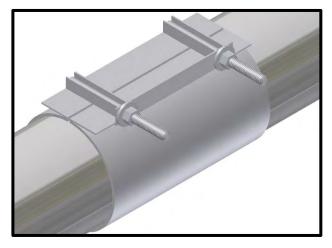

The stainless steel coupling clamp is provided by EDI to make the proper transition between two sections of pipe.

- 1) Ensure that both pipes are clean.
- 2) Center the pipes on one another.


Note

The gap between the two pipes shall be less than **0.25" (6.5 mm)** to ensure proper sealing of the coupling clamp.

- 3) Place a reference mark on the both pipes at a measured distance from the center of the pipe ends.
- 4) Lubricate both the pipe and clamp gasket with soapy water. Do not use oil base pipe lubricant.
- 5) Center the clamp over the two pipes.
- 6) Loosen the nuts to the top of studs.



7) Wrap the clamp around the pipe snapping the washer plate over the receiver bar.

8) Squeeze the clamp together.

- 9) Finger tighten the nuts down.
- 10) Rotate clamp toward the threaded end of the studs to smooth out the gasket.

11) Torque nuts in accordance to the appropriate table below.

Imperial Pipe Chart			
Nom. Pipe Size	Clamp Range	Torque	
2"	2.32" – 2.63"		
3″	3.40" – 3.70"		
4″	4.45" – 4.75"	70 ft-lb	
6″	6.55" – 6.95"		
8″	8.59" – 8.99"		
10″	10.65" – 11.05"		
12″	12.65" – 13.05"	85 ft-lb	
14″	13.70" – 14.10"		
16″	15.92" – 16.67"		

Metric Pipe Chart			
Nom. Pipe Size Clamp Range		Torque	
90mm	86mm – 94mm		
110mm	105mm – 115mm 95 N-		
160mm	151mm – 161mm		
200mm 195mm – 205mm			

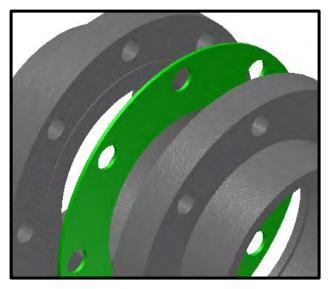
12) Correct torque indicated by slight deformation of washer plate and nylon washers.

Flange Installation

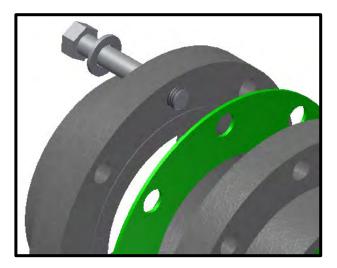
R.2018-05-11

In-basin piping is connected with flanges and supported by partially assembled pipe supports.

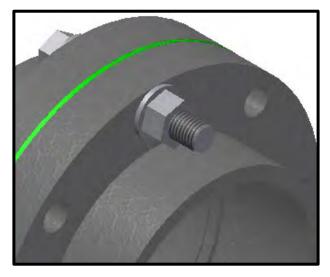
Gaskets and stainless steel fasteners are provided by EDI for flanged connections. Recommended bolt-tightening torques are indicated in the torque table on the Flange Installation Detail Drawing.


An industrial grade anti-seize lubricant **MUST** be used on stainless steel bolt threads to prevent galling. Contractor will be responsible for replacement of all damaged items resulting from not using anti-seize lubricant.

 Lay out sections of pipe to be joined in order, ensure that the orifices are in the correct orientation to install diffusers as shown on the layout drawing.


Note

EDI provides flow arrows and labels on pipe corresponding to labels on layout drawing.


2) Rotate the loose ring of flange(s) to align the bolt holes with the gasket and the mating flange. (*This step does not apply to EDI slotted flanges*)

3) Insert a Stainless Steel bolt through the flange assembly in one of the bolt holes.

- 4) Apply anti-seize to bolt.
- 5) Place supplied hardware on bolt in accordance to the installation detail drawing.
- 6) Thread the Stainless Steel nut on the bolt. Ensure the nut **is not** tightened until remaining bolts have been installed.

- 7) Repeat steps 3-6 for remaining bolt holes around the flange.
- 8) Once all the bolts have been installed, insure that all components are properly aligned. Using the torque table on the Flange Installation Detail Drawing tighten the first pass to 30% of the value in the torque table.
- 9) Torque the assemblies to 60% of the value in a reverse sequence.
- 10) Tighten to 100% of the torque table value, using the first torque sequence. For best results insure that the torque tool used has recently been calibrated.

As piping sections are assembled, maintain correct alignment of the air outlets on the lateral so that diffusers will be level when installed.

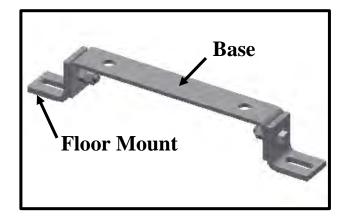
If the specifications require the system to be pressure or leak tested, all openings are to be plugged before the system is tested. EDI recommends not exceeding 10 psi (69 kPa) during pressure or leak testing.

Pipe Support Installation Instructions

R.2020-07-16

EDI provides pipe supports to secure the aeration piping to the basin floor. EDI may provide a variety of supports depending on the application. Reference the EDI layout drawing(s) and installation detail drawings to follow the correct installation section before continuing.

Depending on project specific forces and/or turbulence anticipated in the basin, EDI may include additional support features. Please review all details shown in the EDI construction drawings to ensure all features are properly installed.

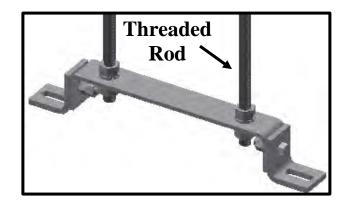

Rigid & Simple Pipe Support Installation

To maintain proper clearance for the diffuser mount, EDI recommends a minimum distance of **4" (102mm)** between any outlet hole and a pipe strap. When a support must be relocated due to the support clearance indicated, shorten rather than lengthen the support spacing.

- See EDI layout drawing for proper pipe support spacing and locations.
- Drill holes for the anchor as vertical as possible. To assure full holding power, do not ream the hole or allow the drill to wobble.
- 3) Clean the hole with a brush or air.

Skip step 4 if anchor studs are not supplied. Continue to step 5 if anchor wedges are supplied.

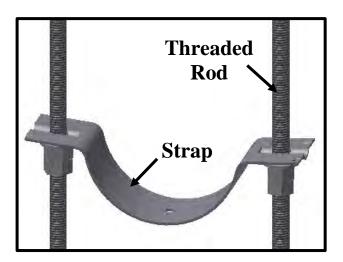
- Adhere the anchor to the basin floor with Epoxy.
 Follow the Epoxy manufacturer's guideline.
- 5) Set the wedge in the hole using the anchor manufactures guidelines.
- Attach a floor mount to the bottom of the base by using one bolt and two nuts.
- 7) Apply anti-seize to the bolt.
- Insert the bolt through the <u>hole</u> in the floor mount and the base.
- 9) Thread both nuts onto the bolt.
- 10) Torque the first nut to **5 ft-lbs (6.8 N-m).**
- 11) Then jam the two nuts together using the required valued listed in the table below.

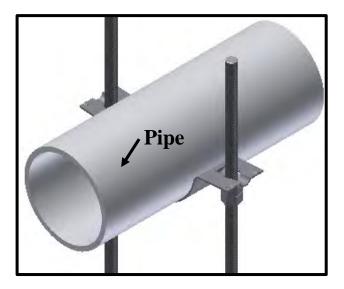


12) Repeat the steps listed above for the other end of the base and remaining supports.

Note

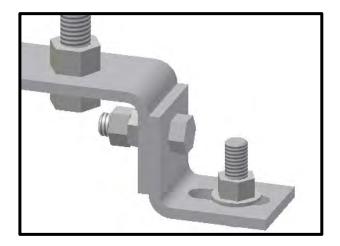
The foot piece should be allowed to pivot.


- 13) Apply anti-seize to the threaded rod.
- 14) Thread one nut approximately 1" on one end of the threaded rod.
- 15) Insert this assembly through one of the holes at the top of the base.
- Thread a second nut on the threaded rod, underneath the top side of the base.
- 17) Torque the nuts to the required valued listed in the table below.


 Repeat the steps listed above for the other end of the base and remaining supports.

Required Bolt/Nut Torque Values		
Bolt Sizes Torque		
3/8 in.(10 mm)	25 ft-lb (33.9 N-m)	
1/2 in. (12 mm)	55 ft-lb (74.6 N-m)	
5/8 in. (16 mm)	90 ft-lb (122 N-m)	

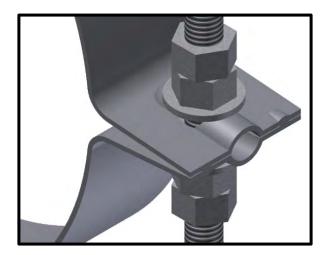
- 20) Thread two nuts on both threaded rods just below the pipe center line.
- 21) Place one flat washer on each threaded rod.
- 22) Place the bottom stainless steel pipe strap onto the threaded rods. The strap should rest on the nuts and washers placed on the rod from the previous step.



23) Place the support over the anchors.

- 24) Set the air piping on the bottom pipe strap.
- 25) Level the piping.
- 26) Adjust the pipe elevation by "tightening" or "loosening" the nuts that were previously installed.
- 27) Place the top stainless steel pipe strap onto the threaded rods around the air piping.
- 28) Place one flat washer on each threaded rod.

- 29) Loosely thread two nuts on each rod over the top pipe strap.
- 30) Apply anti-seize to anchor.
- 31) Place a flat washer over the anchor.
- 32) Thread a nut onto the anchor, reference the table above for the proper torque values.

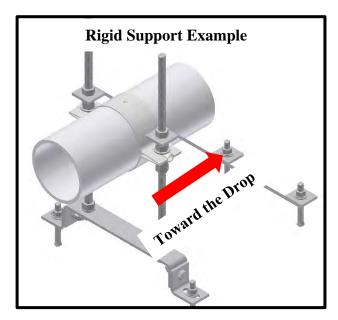

33) Equally tighten the nuts directly above and below the straps until the ends of "ears" touch.

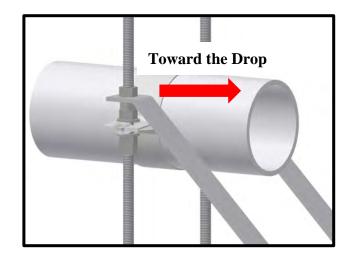
Warning

Misalignment of the straps will hinder proper operation of the strap through the full range of motion the straps are designed to provide. It takes less than 1ft-lb (2 N-m) to reach this position.

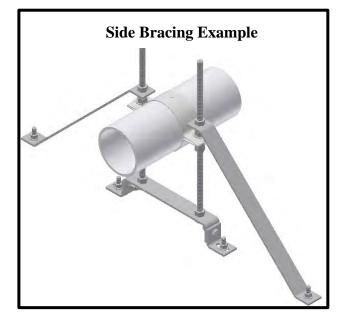
Care should be taken to not over tighten the straps, as this can cause irreversible damage to the straps and in some instances, the pipe.

- 34) While securing the hex nuts that are in contact with the washers, jam the second nuts to the proper torque value indicated on the table above.
- 35) Continue for remaining supports.




- Place the stabilizer on the threaded rod. The stabilizer should be resting on the jam nuts.
- 2) Mark hole locations for anchors.
- 3) Install the anchor.

Note


Follow the same anchoring instructions used for the support in the instructions above.

- 4) Thread a nut on the threaded rod.
- 5) While securing the hex nut below the stabilizer, jam the second nut to the proper torque value indicated on the table above.
- 6) Typical Hat style rigid stabilizers will be installed as depicted below.

Note The Rigid stabilizers should be installed toward the drop pipe.

EDI recommends trimming any excess threaded rod from above the Pipe Support Assembly. At a minimum 1" (25mm) of threaded rod should be left above the top nut, not to exceed 3" (76mm). Any Project Specification, Engineer's Specification, Contract Documents, State or Local Safety Regulations, will take precedence over this supplementary guideline.

Aeration for Life

Installation Guide

For ADHESIVE ANCHORS

The information below is intended for reference <u>ONLY</u>. Follow the manufacturers guidelines and installation methods when installing Adhesive Anchors. The methods and Data listed below is a synopsis of <u>Red Head</u> and <u>Hilti</u> installation instructions.

Installation Depths:

Threaded Rod Diameter		Drill Hole Diameter		Minimum Embedment Depth	
In.	(mm)	In.	(mm)	in.	(mm)
0.375	(9.5)	0.438	(11.1)	3.375	(85.7)
0.500	(12.7)	0.563	(14.3)	4.500	(114.3)
0.625	(15.9)	0.750	(19.1)	5.625	(142.9)
0.750	(19.1)	0.875	(22.2)	6.750	(171.5)

Installation Steps:

- 1. Drill Hole. (Reference Table Above)
- 2. Extract Debris from Hole¹. (Vacuum, Compressed Air [50-100psi], Etc.)
- 3. Brush the Hole².
- 4. Repeat Step #2.
- 5. Dispense Anchor Adhesive into **60%** (*about 2/3*) of the hole depth.
- 6. Insert Threaded Rod.
- 7. Wait for the Adhesive to Cure. (*Reference Table Below*)

Curing Times:

Concrete		Adhesive		Full Cure Time
F°	(C°)	F°	(C°)	
110	(43)	110	(43)	45 Minutes
90	(32)	90	(32)	45 Minutes
70	(21)	70	(21)	45 Minutes
50	(10)	50	(10)	90 Minutes
32	(0)	32	(0)	4 Hours
14	(-10)	32	(0)	24 Hours

¹ Submerged or Damp Installations may require more cleaning. To help mitigate airborne dust, it is recommended to wet the concrete prior to using compressed air or use a drill dust extractor with the pneumatic nozzle.

² Submerged or Damp Installations may require more brushing.

SDM MiniPanel and Magnum Installation

R.2020-05-13

Prior to installing the diffusers and accessories, ensure that the air laterals are installed with the orifice holes in the horizontal position.

Each duplex diffuser assembly consists of:

- One "Male" Diffuser.
- One "Female" Diffuser.
- Two Wedges.
- Two O-rings.
- One alignment plug (if provided).

If simplex diffusers have been provided, EDI will supply a "Blank Saddle" to replace one of the diffusers. The installation of the assembly will remain the same.

Tools required for installation include:

- Non-metallic mallet (Not provided by EDI).
- Bubble/laser level (<u>Not</u> provided by EDI).

Due to project specific turbulences EDI may supply supplemental end supports for diffusers. For these instances the Alignment plugs will not be required at those locations. If so, please ignore the section below. Reference the Diffuser End Support detail drawing (located in the detail drawing packet) for instructions for installing the end supports.

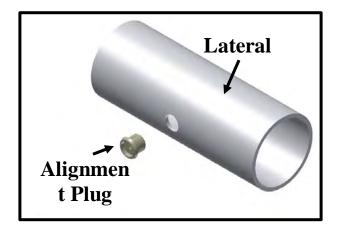
If Alignment plugs are not required, an alignment tool (or an SDM saddle) will be needed to mark the location of the saddle for proper diffuser alignment on the orifice hole(s). Place the saddle over the orifice hole and trace along the outside of the saddle with a permanent marker.

Installation of Alignment Plug (if provided)

If Aeration equipment is supplied for multiple basins, each basin may not use the same alignment plug.

Reference the table below to determine what plugs have been supplied.

Orifice Identification		
Orifice Diameter	Plug Color	
6.35mm (0.250")	White	
7.94mm (0.312")	Purple	
9.52mm (0.375")	Red	
11.11mm (0.438")	Yellow	
12.70mm (0.500")	Green	
14.29mm (0.562")	Tan	
15.88mm (0.625")	Black	
17.46mm (0.688")	Orange	


19.05mm (0.750")	Blue
20.64mm (0.812")	Pink

1) Locate the 1"Ø holes in the lateral(s).

Note

The alignment plugs should only be installed on one side of the lateral.

2) With the ribs facing the orifice hole, place the alignment plug on the 1"Ø hole.

3) Push the Alignment Plug into the orifice hole.

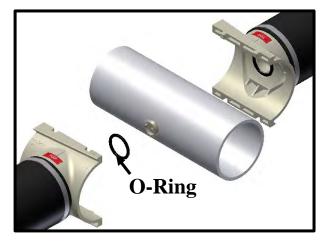
Note

A rubber mallet can be used to set the alignment plug. If used, ensure that the plug is properly seated and was not damaged. Damaged plugs will need to be replaced.

Installation of Diffuser Assemblies

Diffuser assemblies feature a red "TOP" sticker factory installed on the SDM saddle. The sticker should be facing up when properly installed.

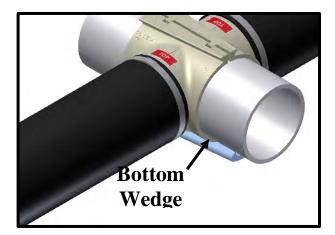
<u>Metal</u> mallets or hammers may crack or shatter the wedge assembly or damage the Diffuser. <u>Do not</u> use metal hammers directly on plastic parts or fittings.

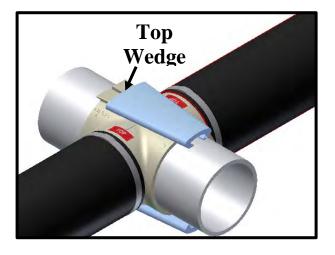

 Place an O-ring in the Male and Female diffuser assemblies.

Note

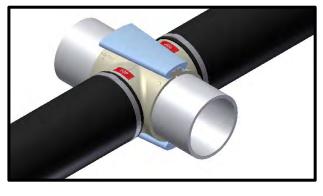
The O-ring must be able to move to seal when pressure is applied. During cold weather installation, it is advisable to keep the O-rings warm.

2) Place the first Diffuser (Male or Female) on the side with the alignment plug.


3) Place the mating Diffuser on the opposite side.


Note

Ensure that the saddles' alignment pins mate properly when installing the opposing saddle before sliding on the wedges. The red "TOP" stickers should face up.


4) While holding the top connection, slide the bottom wedge on 3/4 inches from being flush.

5) Slide the top wedge 3/4 inches from being flush.

6) Using a non-metallic hammer, equally tighten the top and bottom wedge until flush.

Warning

Extra care is needed during cold weather installation, below 40°F (4°C). Plastic components become brittle and may fracture with excessive impact force.

Over-tightening wedges can cause irreversible damage to the diffuser saddle.

Note

If supplemental diffuser end supports have been provided, please reference the installation details provided in this packet and follow the proper installation instructions on the drawing.

Leveling of Diffusers

Air distribution through the aeration system is a function of the relative elevation of the individual aeration units and the leveling tolerance of the air supply piping. Excessive variation in pipe elevation (see Start-up Instructions) may result in poor air distribution during normal operation.

As a guideline, EDI recommends that aeration units be installed as level as practical, preferably no more than $\pm 1.5^{\circ}$, and in any case no more than $\pm 3^{\circ}$.

See the following table for equivalent distances at the tip of the diffuser for these values:

Diffuser Type	Variation at Tip of Diffuser to equal 1.5°	Variation at Tip of Diffuser to equal 3°
Magnum (std. length)	±1-1/4"	±2-1/2"
MiniPanel (std. length)	±1-1/2"	±3″
9" Disc	±1/8"	±1/4"
12" Disc	±5/32"	±5/16"

Purge Installation Instructions

R.2019-04-16

For EDI PVC Manual purge to remove accumulated condensation from the EDI aeration system. Please review detail 31604 (on page 84 of this submittal) to ensure all features are properly installed.

Warning

Avoid excessive torque on plastic threaded fittings as this may cause thread damage. If damage to the ejector pipe or factory installed threaded outlet occurs, contact Diffuser Express for replacement parts.

Manual Purge Installation Instructions

Start-Up Instructions

General Aeration/Mixing Systems Start-Up Instructions

R.2017-09-06

These instructions cover the general start-up requirements for the aeration system. Special start-up requirements outlined in the Engineer's specifications, contract documents, or instructions offered by EDI shall be supplementary to or take precedence over these general instructions.

General Air Piping Inspection

Contractor is to confirm the cleanliness of the air piping. If existing header piping is used, the air purge or water flush cleaning procedure is recommended prior to installation of diffuser units to remove any internal debris that may have accumulated in the header piping.

Inspect air piping and diffuser connections for loose fittings or damaged pipe. Damaged piping sections and connections should be repaired prior to commencing system operations.

Confirm that piping and diffusers are level by filling the basin with water until the diffusers are 1" to 2" under water. Diffuser elevation tolerance should be within the approved tolerance for the respective diffusers. Adjust supports as required to level the air supply piping (on which the diffusers are mounted) to within a tolerance of $\pm 1/4$ ".

Blower Components

See the blower installation and start-up instructions to assure all blower components are mounted properly and ready for operation. When EDI provides the blower assemblies, detailed installation and start-up instructions are provided in the blower submittal package.

Blower components should be fully installed and fully serviced prior to making final electrical connections and starting up the aeration system.

Precautions should be taken throughout system installation to minimize the discharge of airborne particles to the aeration system. As a minimum, an air inlet filter should be installed and operated during blower servicing procedures. EDI recommends a filter efficiency of 93% of 10-microns. Any solvents used to clean blower should be bypassed from the aeration piping. The discharge of airborne particulate matter or solvent into aeration piping may result in damage to diffuser membranes.

Upon completion of blower manufacturer's recommended service, the subsequent start-up procedures may be followed.

Initial System Start-Up

To start the system, completely open all valves in the air supply system, including blower shut-off valves, header valves and lateral isolation/throttling valves. This instruction assumes that uniform water level is present in all aerated basins served by a common blower. If varying water levels are present, basins with lower water levels will need to have the valve to that basin throttled back to avoid improper air distribution. Failure to completely open all valves may result in over-pressuring blower unit, release of pressure relief valve, motor overload, or poor air distribution in aeration system with the potential of exceeding airflow capacity to diffuser units and damaging the diffuser membranes.

Once valve positions have been confirmed, the blower unit may be started. EDI does not recommend starting multiple blower units at initial system start-up. Subsequent blowers should be brought on-line after the system has equalized and uniform diffuser activity is observed throughout the system.

Use the blower manufacturer's recommended start-up procedures. EDI recommends that initial pressure surge be reduced through PRV or blow-off valve.

Start-up procedures should follow the basic guidelines as listed below:

- When starting initial blower, the PRV or blow-off valve should be used to reduce the start-up pressure surge. This is accomplished by removing weights and the cap from the PRV or by opening the blow-off valve.
- When the basin has been filled, note the operating pressure at the blowers. The pressure relief valve should be adjusted to free-flow at approximately 1 psig above the normal operating pressure of the system.
- To confirm the PRV operates, partially close blower shut-off valve until PRV releases air. Reopen the shut-off valve to confirm that PRV will reseat. If

required, readjust the PRV to the recommended setting per instructions in the Blower IOM manual.

- To properly assess the airflow distribution on the aeration system, the blower system must be operating at the design operating point. On dual blower systems, design airflow is typically achieved by operating one blower at 100%. On three-blower systems, design airflow is typically based on operating two blowers at 100%.
- Airflow distribution adjustment between aeration grids should not be conducted until the full operating depth is obtained and the blower system has been in operation for several days. Small adjustments may be made to the isolation/throttling valves on the laterals receiving the most air. System balancing should be completed on an incremental basis. Changes in airflow distribution may require 2-8 hours to fully stabilize when fine-tuning a system. In addition, in situations where multiple basins are employed and varying water levels exist, adjustments of lateral valves will be required to maintain air distribution in the tanks.

EDI recommends that the system Operator contact EDI at 573-474-9456 prior to making any adjustments to the airflow distribution.

Active Aeration Inspection

With the blower system active, operate the aeration system at 50% design air capacity. At this setting, check piping and diffusers for obvious leaks, and repair as required. Open any manual purge valves to expel water that may be in the piping. Close the purge valves once all water has been expelled.

Note

It is typical for Polyurethane (PU) membranes to leak at the stainless-steel clamp location. Once hydrated, the leaks will disappear.

Check for minor leaks by completing the following steps:

• Turn the airflow down to very minimal release. If the system employs separate drop valves, each grid can be checked separately by throttling the valve one at a time. Again, take care not to exceed airflow capacities in neighboring aeration grids when reducing airflow by this method.

The airflow will not be uniform at this low level. This is acceptable, as this test is only used to check for small leaks that are not visible with the design amount of airflow. Check for any observed leaks and repair as required.

Leaks commonly occur due to:

- Missing or misaligned O-ring
- Torn membranes
- Loose disc retainer ring

Optional Water Flush and Air Purge Cleaning of Piping

R.2015-06-17

These instructions cover the general procedure that may be used to clean the piping in a fine or medium bubble diffuser system prior to diffuser installation. Special pipe cleaning requirements outlined in the Engineer's specifications, contract documents, or instructions offered by EDI shall be supplementary to or take precedence over the general instructions outlined below.

If both water flush and air purge cleaning are used, the water flush procedure should be implemented first.

Water Flush Cleaning

To water-flush the system, connect a water supply to the air header or make individual connections to each lateral. If flush water is piped to the header, it is imperative that the header be valved or stubbed such that water does not flood the blowers.

Clean water must be used. It is not necessary to use potable water, but the flush water must be free of silt or debris.

Flush header assembly prior to water flushing the laterals. To flush the header, fill it with water and open the end lateral to create a flush velocity in the header of at least two feet per second.

The laterals are to be individually flushed at a recommended velocity of five to six feet per second. This is done by sequentially opening and closing the isolation valves on the individual laterals.

Opening one isolation valve will produce a significant flushing action in the lateral as water is pumped through the header. One or two drilled air outlet holes should be uncapped to allow water and debris to be flushed out of the piping.

As an alternative to using the main header/lateral flush procedure, the individual laterals may be cleaned independently of the main header. For this operation, the laterals are disconnected from the main header and cleaned individually.

Air Purge Cleaning

Remove weights and cap from the pressure relief valve during initial start-up of the system. This prevents potential damage to the blowers from blocked valves or obstructions in piping system. Cap and weights can be added back to the pressure relief valve as necessary to provide proper operating pressure capability.

Note

When a blow-off valve is provided for the blower system, it may be operated in lieu of using the pressure relief valve procedure listed above.

Open all lateral valves prior to start-up of the blowers. Provide an opening at the end of the air laterals to allow air and foreign materials to be discharged from the system. The opening may be made at the end of the air lateral by leaving the end cap off of the lateral or by removing two orifice/outlet plugs at the end of the lateral.

In order to increase the velocity of air through the header and air laterals, it may be desirable to operate at maximum blower capacity. In addition, it may be necessary to close some of the lateral throttling valves to achieve a high velocity through the balance of the laterals that are open to the atmosphere. A high velocity is required in order to blow out any accumulated foreign materials.

As laterals are consecutively cleaned, the isolation valves are operated in a manner that allows the remaining laterals to be cleaned by an air purge.

Upon completion of the air purge, the blowers are shut down and the laterals are capped. Diffuser units are installed on the laterals and all isolation valves are opened prior to filling the basin with water.

If only an air purge is used to clean the piping, the basins are now ready to be filled with water to check the operation of the diffuser units

This page intentionally left blank

Safety Considerations

General Safety Considerations

R.2015-06-17

The diffused aeration system supplied on this project has no moving parts and poses little to no risk of injury. However, routine maintenance may expose personnel to potential hazards. EDI has listed below potential hazards and recommended precautions when maintenance procedures are required for the aeration components.

Tank Hazards (at full liquid depth):

• Turbulent liquid action.

Precautions:

- Provide access to emergency throw rope or life ring.
- Use buddy system and follow standard safety procedures.

Tank Hazards (empty):

- Falling into tank.
- Objects falling onto personnel in the tank.
- Slippery basin floor.

Precautions:

- Avoid access ways without railings.
- Provide emergency exit/access.
- Appropriate personal safety equipment

Personal Protection Measures

Wastewater has a potential for health hazards because it may carry disease producing organisms and a variety of chemical wastes. It is important to employ good personal hygiene practices to prevent oral and skin contact with wastewater.

The following is a list of methods to prevent direct contact entry of pathogenic organisms:

- Wash hands frequently with soap and water after contacting wastewater, visiting restrooms, before eating, drinking, or smoking; and at the end of jobsite visit. When soap and water are not available use antibacterial hand wash specifically formulated for use when soap and water is not convenient.
- Promptly treat cuts and abrasions using appropriate first aid measures.
- Handle sharp items with extra care to prevent accidental injuries.
- Clean contaminated tools after use.

- Follow good common sense and exercise extra caution whenever there is contact with contaminated water or sludge.
- Never touch face, mouth, eyes, ears, or nose while working with wastewater or sludge.

Personal Protective Equipment

Wear heavy-duty gloves (or double gloving) and boots that are waterproof and puncture resistant. When practical, use thin disposable latex gloves for light work. Use reinforced rubber gloves for heavy activities.

Discard gloves that become torn and try not to submerge hand below top of glove during service activities. When it is not feasible to use gloves while installing or inspecting equipment, make sure to follow personal hygiene practice listed above.

Wear goggles in the presence of heavy aerosols, dust, or when splashing of wastewater might occur.

Wear protective clothing; if possible, shower and change clothes before leaving plant site. If work clothes are washed at home, separate from the family wash and use chlorine bleach.

Confined Space Hazard

Verify the designation of the tank before entering. Wastewater tanks or basins can be considered confined spaces and contain potential hazards. Flammable, explosive, toxic, or other hazardous substances or the absence of sufficient oxygen could cause injury, acute illness, disability, or death.

Particular care should be exercised to assure NO hydrogen sulfide, chlorine or other heavier than air gases have accumulated in the basins or tanks. DO NOT ENTER ANY CONFINED SPACE until your supervisor has verified that proper safety precautions have been met. Do not enter a confined space without someone else present on the outside and do not enter a confined space without proper rescue equipment outside the confined space. Every confined space entry has a unique set of hazards, but atmospheric monitoring and proper entrance procedures can minimize the hazards entry personnel typically encounter.

This page intentionally left blank

Operation Instructions

Description of the Aeration-Mixing System

R.2017-08-22

The aeration-mixing system employs a main air header and valved lateral piping system to distribute air throughout the basin. EDI normally designs the aeration system piping to provide uniform air distribution without adjustment to the isolation/throttling valves on the laterals. However, these valves are typically provided for direct control of airflow distribution on large aeration systems or for process control. If process demands dictate a revised airflow distribution pattern, contact EDI for guidance on modification to the system.

Normal Operation of the Aeration System

The following procedures should be followed on a regular basis to assure consistent and satisfactory performance of the aeration-mixing system.

The air rate to the system may be adjusted to maintain the desired dissolved oxygen levels in the basin. When adjusting the airflow rate, the diffusers should be operated within the normal operating range of the diffuser. Excessive airflow rates will result in high pressure drops across the diffuser and reduced oxygen transfer performance. Low airflow rates may result in incomplete utilization of the diffuser membrane and reduced air distribution.

The aeration-mixing system is designed to provide uniform aeration. Positive dissolved oxygen concentrations should be present throughout the entire system during normal operation.

A dissolved oxygen profile analysis may be used to confirm the performance of the aeration system. Typically, the dissolved oxygen levels are measured at the inlet, the outlet, and the midpoint locations of each basin to determine the aeration system performance. In regulating the system airflow to control dissolved oxygen levels, the diffuser units should be operated within their minimum and maximum airflow limits.

In applications where water level variations may exist between aeration basins supplied by a single blower, the isolation valves may need to be adjusted to maintain adequate airflow distribution. This normally requires valving back the air to the basin with the reduced water level.

Note

It is important to confirm the operating airflow range of the diffuser units before valving back any isolation valve. Damage could result to the aeration diffuser if airflow is above the recommendations noted in the Product Specification Sheet. Please consult EDI to confirm operating procedure before adjusting any aeration isolation/throttling valve.

Normal Operation of the Blower System

The Aeration-Mixing System normally utilizes a centrifugal or positive displacement (PD) blower system consisting of one or more blower units for normal operation plus one on-line spare unit. All blower units including the spare unit must be operated on a regular basis to maintain their proper working condition. EDI recommends that blower units be operated sequentially with idle blower units brought on-line weekly. EDI does not recommend the simultaneous operation of on-line and spare blowers for an extended period. This operating condition may deliver airflows exceeding the air capacity of the diffuser units.

All blower components should be serviced on a regular basis. For additional information concerning proper blower operation, service requirements or service intervals, reference the Blower Operation and Maintenance manual.

Shutdown Conditions

If air service is interrupted at any time, it should be restored as soon as possible. When restarting positive displacement blower units, the start-up pressure surge should be reduced by down-weighting the pressure relief valve (PRV) or operating the blow-off valve. Once the blower is operational, reset the PRV or slowly close the blow-off valve over a five- to ten-minute period. The PRV must be set properly to prevent overloading of the blower system. Operate manual water purge devices if provided. If the PRV releases air for an extended period, the relief setting should be checked.

Normal Operation of the Diffuser Unit

The diffuser unit has no moving parts and requires very little maintenance for long-term operation. EDI recommends that the air supply to the diffusers be operated within the ranges noted in the Product Specification Sheet to provide optimum operating characteristics of the diffuser assembly.

For Fine Bubble Diffusers; application of high airflows, greater than denoted for normal operation, may result in physical damage to the diffuser membrane.

Note

Use caution when adjusting several lateral throttling valves in the same piping system. This procedure can result in elevated airflows

in sections of the basin, exceeding the maximum allowable airflow to each diffuser unit.

Normal Operation of the Purge Assembly

Condensation will accumulate in the subheader and lateral piping due to the cooling of the air when it reaches the aeration system. EDI has provided a purge assembly to remove this accumulation from the pipe while the system is in operation. If a manual purge assembly has been provided, open the ball valve at the top of the purge assembly on a monthly basis. Allow the water to exit through the valve until only air remains. Close the ball valve once the purging process has been complete

Preventive Maintenance

Maintenance Schedule

R.2015-06-17

In order to be covered by the manufacturer's warranty the FlexAir aeration system must be maintained. EDI recommends to visually inspect the overall system and clean the membranes to remove any accumulated foulants on an annual basis. This activity is beneficial to the Owner, as a reduction in the uniformity of air release or an increase in backpressure will impact the power use. The FlexAir aeration system is designed to allow the system to be accessed by dropping the water level in the basin being serviced.

Note

To prevent solids from entering the system, it is important to keep the air flowing through the system until the water level has dropped below the lateral piping.

The air to the basin being serviced should be turned off after the water has dropped below the lateral piping and diffusers to prevent the possibility of excessive airflows to the units or damage to the blower unit.

The following items may be helpful in servicing the FlexAir aeration system during periodic inspections or maintenance procedures:

- Protective gloves and clothing
- Long-handled soft bristle brush for cleaning assembly for observation
- Spare FlexAir membranes

All system components should be inspected for general wear or damage. This includes but is not limited to:

- Pipe supports including anchor bolts, pipe straps and fasteners.
- Pipe connection including fasteners, shifts in alignment of pipes and joints.
- Diffuser assembly including position, membrane integrity, membrane clamps / retainer ring, etc.
- Purge assembly components including all connections, anchor points, and wear at any contact points.
- Any worn or damaged components need to be repaired or replaced. Please contact EDI for assistance in identifying a root cause and solution.

In Situ Acid Cleaning

When standard cleaning methods do not produce desired results, inorganic scaling may be present and may require an

alternate cleaning technique. Inorganic scaling is a granular mineral-like precipitate that can form on the membrane surface.

Read all applicable SDS (Safety Data Sheets) carefully and follow all instructions given therein. Always have new users familiarize themselves with the SDS before handling chemicals. Wear personal protective equipment (including, but not limited to, rubber gloves, safety goggles, and other protective clothing) as required.

The foulant adhered to a membrane can be tested with a solution of muriatic acid (20° Baume Hydrochloric Acid, 31.45% by weight HCl) for reactivity. This may indicate the nature of the foulant and its propensity for chemical cleaning. Ensure that the air supply has been turned off from the diffusers being serviced. Afterwards, place a small amount of acid on the surface of the membrane where fouling is most prevalent. If the foulant is reactive to acid, this is indicative of inorganic fouling, such as calcium deposits, and acid cleaning is recommended. Otherwise, the foulant is typically organic and acid cleaning may not prove effective.

If it is determined that the foulant does respond to acid, the membrane may be cleaned with acid in addition to manual cleaning. This technique involves applying Muriatic Acid directly to the membrane surface after the manual cleaning procedure followed by rinsing with a low-pressure hose. In the case of ceramic diffusers, the acid is typically applied both on the surface and pumped through the diffuser using air.

Note

EDI can provide an acid injection system, upon request, for cleaning aeration systems without process interruptions. Contact EDI for more information.

Membrane Protection

The diffuser membranes should be protected from chemicals that may be harmful to the material. If using a cleaning aid or other substance on or around the membranes, please contact EDI for chemical compatibility.

This page intentionally left blank

Corrective Maintenance

Troubleshooting

R.2015-06-17

The FlexAir aeration system requires very little maintenance for long-term operation. Periodic visual inspection of the system should allow the Operator to determine if the system is performing at optimum levels.

Operating airflows below the design condition will also reduce the uniformity of air distribution. If operating conditions warrant airflow rates below the design condition, contact EDI for additional operational guidelines.

Below are symptoms and procedures to follow if inspection of the aeration system reveals abnormal operating characteristics:

Large volume of air in localized area		
Possible Cause	Procedure	
Air leak in aeration piping.	Access area in question.	
	Inspect joints for evidence	
	of breakage.	
Diffuser membrane	Inspect diffuser units for	
damaged or missing.	membrane damage. Repair	
	as required.	

Decreased diffuser activity and increased back pressure
noted at blower

lioted at Diowei		
Possible Cause	Procedure	
	Access diffusers and	
Diffusers becoming fouled	inspect for external or	
or deformed.	internal fouling or	
	deformation.	
Reduced blower discharge	Confirm blower operating	
air volume.	point and rpm reading.	
	Confirm isolation valve	
Restriction in air header.	position on header and	
	drops.	

Dissolved oxygen profile not satisfactory throughout basin		
Possible Cause	Procedure	
Increased loading to system.	Confirm loading to system.	
Reduced blower discharge air volume.	Confirm blower operations.	
Improper distribution of air in system.	Inspect piping for leaks, both in-basin piping and out	
Air leak in system.	of basin piping leading from the blower system.	
Excessive foulant accumulated on diffuser.	Access diffusers and inspect for external fouling.	

Replacing Diffuser Assembly

R.2015-12-15

If routine inspections reveal the need to replace a diffuser assembly, revert back to the installation instructions for the removal and reinstallation of components. Any parts damaged during removal should be replaced.

Questions regarding the aeration-mixing system operation, maintenance, etc. should be forwarded to Environmental Dynamics International, 5601 Paris Road, Columbia, Missouri 65202. +1(573)474-9456.

This page intentionally left blank

The global leader in wastewater service and maintenance

System installations

Preventative maintenance

System evaluations

Guaranteed performance

Extended warranties available

We know aeration.

High quality standards with efficient solutions to any issue you may face

AerationWorks is the largest and most respected wastewater aeration maintenance and installation firm in the world. We have done projects in the US, Mexico, Europe, China, Russia, South America, and Canada. From system evaluations to system installations, the highly trained team at AerationWorks can help with all your aeration needs.

From system evaluations and installations to refurbishing the entire aeration system, Aeration Works has the knowledge and tools to conduct any aeration repair you may need.

Visit www.aerationworks.com to discover all the benefits!

Environmental Dynamics International **Dynamics** International

Service Department

On-site staff training Inspect installation & supervision Start-up services Maintenance training Troubleshooting

We know service.

Quality on-site customer service from experienced professionals

In addition to the highest quality products, EDI is pleased to offer superior customer & field services. EDI is able to provide these services directly from the EDI Headquarters in Columbia, Missouri, as well as maintaining localized field service offices worldwide.

In order to allow reasonable scheduling and to ensure an EDI representative is available, at least three weeks' notice is needed when requesting service.

EDI provides municipal and industrial treatment solutions in over 100 countries, has performed over 7,000 installations, and treats the wastewater need for an equivalent of more than 400 million people across the globe.

Visit www.environmentaldynamics.com or email servicedept@wastewater.com to contact one of our field service representatives to serve your project site!

Aeration parts for all brands

Express service Wide variety of parts

Competitive pricing

Specialty items

Membrane replacements

Got diffusers?

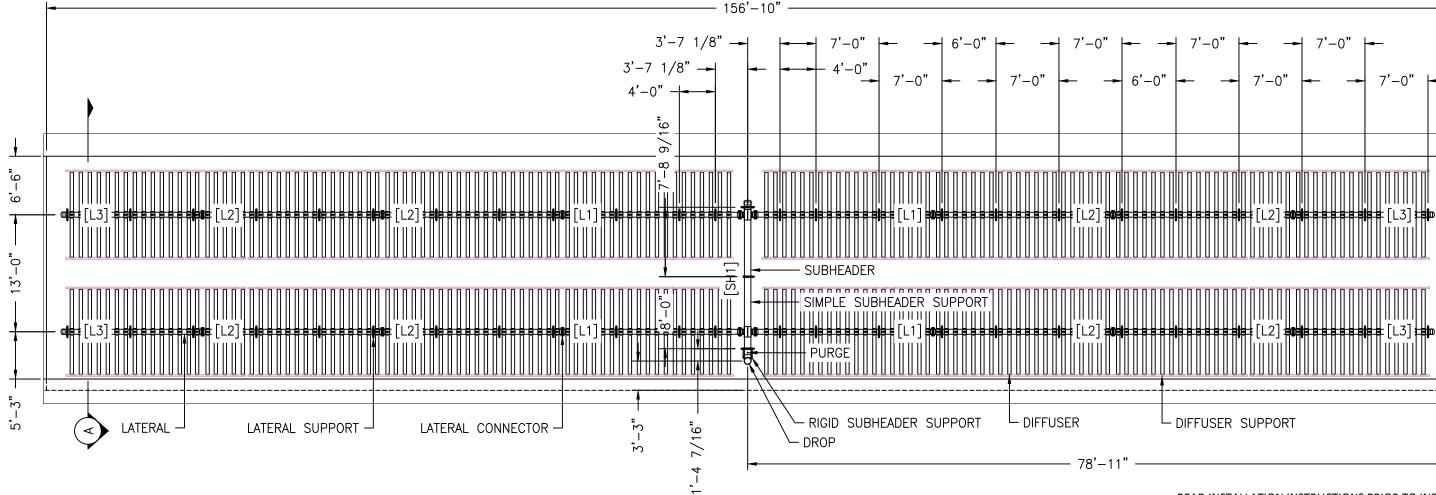
High-quality, aftermarket wastewater aeration parts

Diffuser Express (DX) products will keep your aeration system at the front edge of technology. DX stocks a multitude of high-quality aftermarket replacement membranes and parts to upgrade your existing system for improved operational efficiency or increased capacity.

When application know-how or total system design assistance is required, Diffuser Express can serve as a direct link to EDI's Application Engineering Group. From here, you will benefit from the vast aeration and biological treatment expertise that EDI has amassed from servicing customers around the world since 1975.

Visit www.DiffuserExpress.com to download our parts catalog and discover all the benefits!

This page intentionally left blank


	DEVISI		Aeration	for Life
vT	DESCRIPTION	ON HISTOR	DATE	APPROVED
·				
		AEROE	4/11/23 4/11/23	TEM
		•	26'	
	READ INSTALLATION INS NOTE: CONTRACTOR TO C INSTALLATION AND WILL AND/OR STRUCTURAL CO	CONFIRM EDI	LAYOUT IS SUIT	ABLE FOR
	PROJECT DESCRIPTION ON EDI FLEXAIR FOR: BY: J	DAT	AYOUT N-MIXING SY 8/17/22 9 P: +1 57: F: +1 57:	(STEM CALE: N.T.S. 3 474 9456 3 474 6988 601 Paris Road hbla, MO 65202
	PROJECT NUMBER 38277	SHEET NUMBE 1 OF 1	F	67421

		DJECT PLAN DRAWINGS.
P	IPE S	UPPORT SCHEDULE
LOCATION	ΤΥΡΕ	MAX. DIST. BETWEEN SUPPORTS
SUBHEADER	RIGID	PLACE NEXT TO DROP AS SHOWN STABILIZERS POINTED TOWARD DROP
SUBHEADER	SIMPLE	8'-0"
LATERAL	SIMPLE	7'-3"
Page 58		

- REFERENCE PIPE SUPPORT SCHEDULE. 4 CANTILEVERED DIFFUSERS ALLOWED ONLY AS
- TOLERANCE: ± 3 " 3. FOR MAXIMUM PIPE SUPPORT SPACING
- 2. SUPPORT DIMENSIONS SHOWN FOR REFERENCE. FIELD CONFIRM PRIOR TO DRILLING ANCHORS.
- 1. PIPE SUPPORTS SHOULD BE PLACED AS SHOWN.

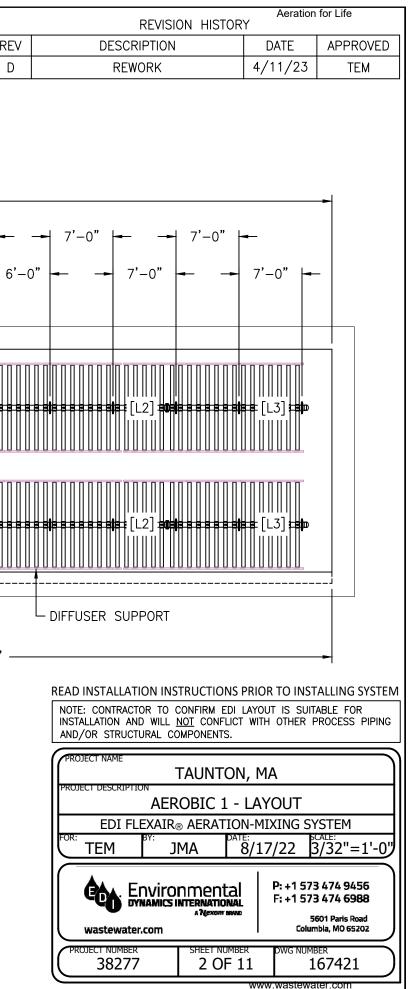
SUPPORT INSTALLATION NOTES:

DIFFUSER END SUPPORT

Environmental Dynamics	s International		
ITEM	ТҮРЕ	DETAIL	I '
DIFFUSER	MINIPANEL MP3	128093	TOP
PURGE	MANUAL	162689	DROP
TRANSITION CONNECTION	COUPLING CLAMP	25945	DROP
LATERAL CONNECTOR	VAN STONE	20324	SUBH
DROP BRACE	ANGLE SUPPORT	104993	LATEF
SUBHEADER SUPPORT	RIGID/SIMPLE SUPPORT	143301/143312	SUPP
LATERAL SUPPORT	SIMPLE SUPPORT	143312	ANCH

FIBERGLASS ANGLE

139070

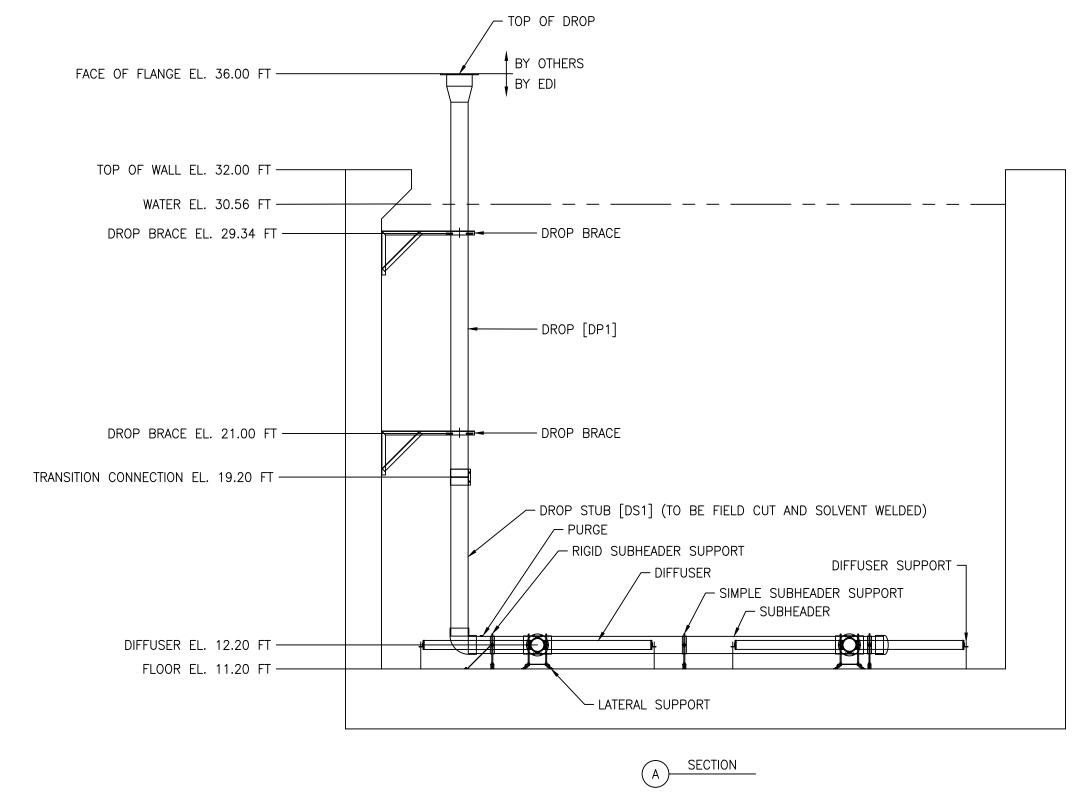

MATERIAL
12" 150# FLANGE
12" X 8" SCH10 304L S.S.
8" SCH40 PVC
8" SCH40 PVC
6"SCH40 PVC
304 S.S.
3/8" 304 S.S.

OF DIFFUSERS TOTAL 296

REV D

2. 1 OF 2 BASINS SHOWN.

GENERAL NOTES: 1. LIQUID DEPTH IS 19.36 FT. DIFFUSER DEPTH IS 18.36 FT.

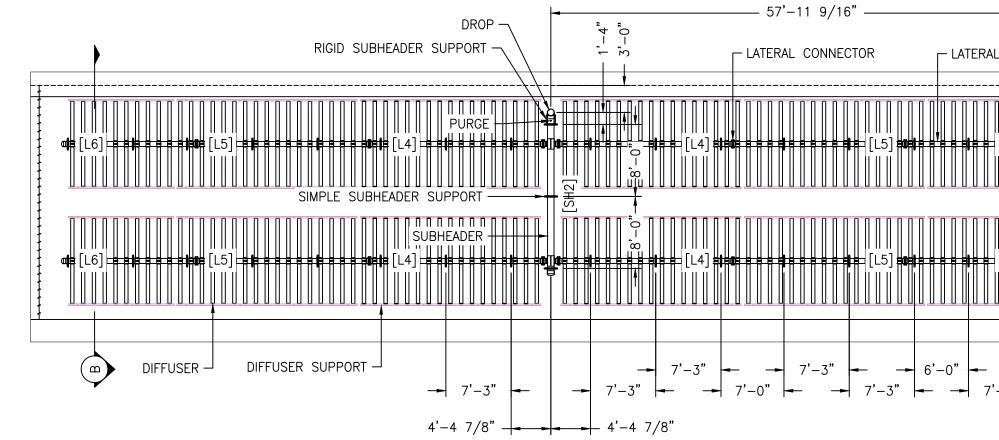


Environmental Dynamics International		
ITEM	ТҮРЕ	DETAIL
DIFFUSER	MINIPANEL MP3	128093
PURGE	MANUAL	162689
TRANSITION CONNECTION	COUPLING CLAMP	25945
LATERAL CONNECTOR	VAN STONE	20324
DROP BRACE	ANGLE SUPPORT	104993
SUBHEADER SUPPORT	RIGID/SIMPLE SUPPORT	143301/143312
LATERAL SUPPORT	SIMPLE SUPPORT	143312
DIFFUSER END SUPPORT	FIBERGLASS ANGLE	139070

ITEM	MATERIAL	
TOP OF DROP	"	
DROP	12" X 8" SCH10 304L S.S.	
DROP STUB	8" SCH40 PVC	
SUBHEADER	8" SCH40 PVC	
LATERAL	6" SCH40 PVC	
SUPPORT	304 S.S.	
ANCHOR	3/8" 304 S.S.	

	Aeration for Life				
REV					
D	REWORK		4/11/23	TEM	
		I			
	READ INSTALLATION INST				
	NOTE: CONTRACTOR TO CO				
	AND/OR STRUCTURAL COM	IPONENTS.			
	PROJECT NAME		МА)	
	PROJECT DESCRIPTION	AUNTON,			
		BIC 1 - SE			
	EDI FLEXAIR®				
		1A 8	/17/22	1/8"=1'-0"	
	Environmental P: +1 573 474 9456 F: +1 573 474 6988			10.0 0.00.000 000000	
	د کروندی				
	PROJECT NUMBER SHEET NUMBER DWG NUMBER				
	38277	3 OF 11		Ğ7421) ∥	

www.wastewat



Environmental Dynamics International			
ITEM	ТҮРЕ	DETAIL	
DIFFUSER	MINIPANEL MP3	128093	
PURGE	MANUAL	162689	
TRANSITION CONNECTION	COUPLING CLAMP	25945	
LATERAL CONNECTOR	VAN STONE	20324	
DROP BRACE	SIMPLE SUPPORT	104993	
SUBHEADER SUPPORT	RIGID/SIMPLE SUPPORT	143301/143312	
LATERAL SUPPORT	SIMPLE SUPPORT	143312	
DIFFUSER END SUPPORT	FIBERGLASS ANGLE	139070	

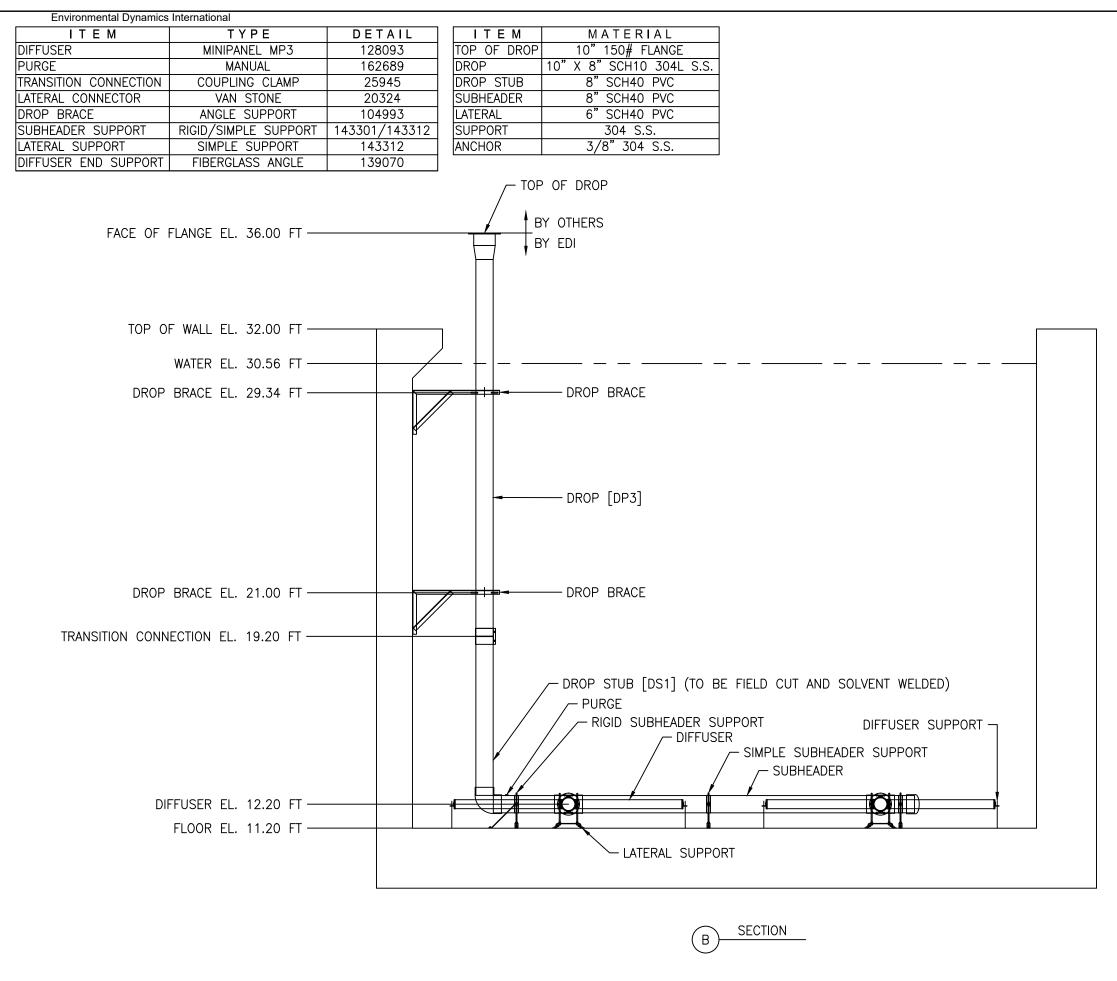
ITEM	MATERIAL	
TOP OF DROP	10" 150# FLANGE	
DROP	10" X 8" SCH10 304L S.S.	
DROP STUB	8" SCH40 PVC	
SUBHEADER	8" SCH40 PVC	
LATERAL	6" SCH40 PVC	
SUPPORT	304 S.S.	
ANCHOR	3/8" 304 S.S.	

	# OF
	DIFFUSERS
TOTAL	176

	REVISION HISTOR	Aeration	for Life
REV	DESCRIPTION	DATE	APPROVED
D	REWORK	4/11/23	TEM
	READ INSTALLATION INSTRUCTIONS NOTE: CONTRACTOR TO CONFIRM EDI INSTALLATION AND WILL <u>NOT</u> CONFLIC AND/OR STRUCTURAL COMPONENTS.	LAYOUT IS SUIT	ABLE FOR
	AEROBIC 2 -		
	EDI FLEXAIR® AERATIO	N-MIXING SY	STEM CALE: 3/32"=1'-0"
		8/1//22	<u>5/32[°]=1'-0'</u>
		F: +1 57	8 474 9456 8 474 6988 601 Paris Road

SUPPORT INSTALLATION NOTES:

- 1. PIPE SUPPORTS SHOULD BE PLACED AS SHOWN.
- 2. SUPPORT DIMENSIONS SHOWN FOR REFERENCE. FIELD CONFIRM PRIOR TO DRILLING ANCHORS.
- TOLERANCE: ±3"
- 3. FOR MAXIMUM PIPE SUPPORT SPACING REFERENCE PIPE SUPPORT SCHEDULE.
- 4. CANTILEVERED DIFFUSERS ALLOWED <u>ONLY</u> AS SHOWN ON PROJECT PLAN DRAWINGS.


-		UPPORT SCHEDULE
LOCATION	TYPE	MAX. DIST. BETWEEN SUPPORTS
SUBHEADER	RIGID	PLACE NEXT TO DROP AS SHOWN STABILIZERS POINTED TOWARD DROP
SUBHEADER	SIMPLE	8'-0"
LATERAL	SIMPLE	7'-3"

GENERAL NOTES: 1. LIQUID DEPTH IS 19.36 FT. DIFFUSER DEPTH IS 18.36 FT.

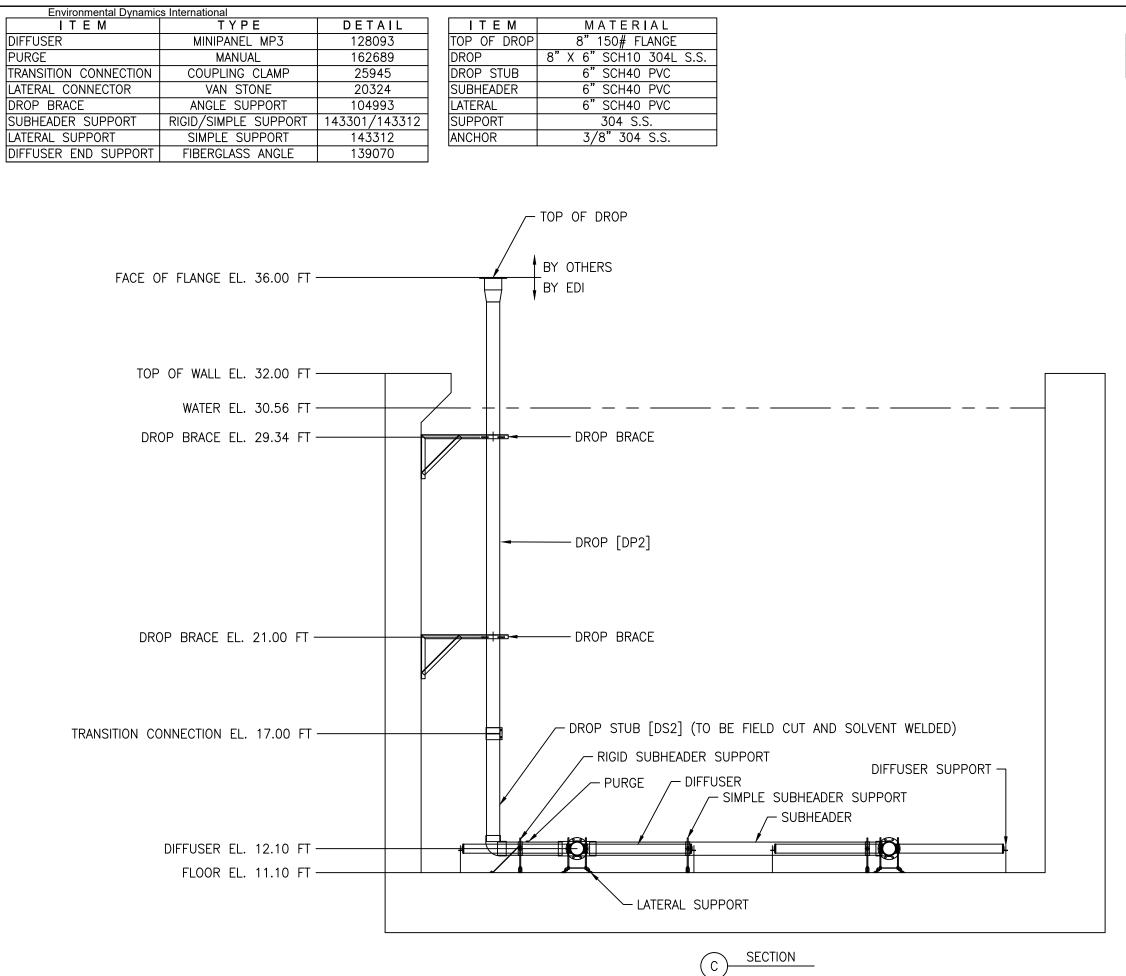
2. 1 OF 2 BASINS SHOWN.

Page 60

	A NEXOT BRAND	5601 Paris Road
wastewater.com		Columbia, MO 65202
PROJECT NUMBER 38277	SHEET NUMBER 4 OF 11	DWG NUMBER 167421
	WW	w.wastewater.com

	REVISIO	ON HISTORY	, Aeration	for Life
REV	DESCRIPTION		DATE	APPROVED
D	REWORK		4/11/23	TEM
	READ INSTALLATION INST	TRUCTIONS P	RIOR TO INST	ALLING SYSTEM
	NOTE: CONTRACTOR TO C	ONFIRM EDI L	AYOUT IS SUIT	ABLE FOR
	AND/OR STRUCTURAL CO	MPONENTS.		
	ר		, MA	
	PROJECT DESCRIPTION AERO	BIC 2 - Se	CTION B	
				ALE
		MA 8	/17/22	1/8"=1'-0"
	Enviror	nmental	25 T 15 61 16 16 6	474 9456
		A Nexcons BRAND	56	601 Paris Road Ibla, MO 65202
	PROJECT NUMBER			JER
	38277	5 OF 1	1 1	67421

www.wastewate


Environmental Dynamic	s International	
ITEM	ТҮРЕ	DETAIL
DIFFUSER	MINIPANEL MP3	128093
PURGE	MANUAL	162689
TRANSITION CONNECTION	COUPLING CLAMP	25945
LATERAL CONNECTOR	VAN STONE	20324
DROP BRACE	ANGLE SUPPORT	104993
SUBHEADER SUPPORT	RIGID/SIMPLE SUPPORT	143301/143312
LATERAL SUPPORT	SIMPLE SUPPORT	143312
DIFFUSER END SUPPORT	FIBERGLASS ANGLE	139070

MATERIAL
8" 150# FLANGE
8" X 6" SCH10 304L S.S.
6" SCH40 PVC
6" SCH40 PVC
6" SCH40 PVC
304 S.S.
3/8" 304 S.S.

Environmental Dynamic							REVISION HISTOF	Aeration	for Life
JSER	TYPE MINIPANEL MP3	D E T A I L 128093	ITEM TOP OF DROP	MATERIAL 8"150# FLANGE	# OF DIFFUSERS				
GE	MANUAL	162689	DROP	8" X 6" SCH10 304L S.S.	TOTAL 120	REV	DESCRIPTION	DATE	APPROVED
ISITION CONNECTION	COUPLING CLAMP	25945	DROP STUB	6" SCH40 PVC		D	REWORK	4/11/23	TEM
RAL CONNECTOR	VAN STONE	20324	SUBHEADER	6" SCH40 PVC					
P BRACE	ANGLE SUPPORT	104993	LATERAL	6" SCH40 PVC					
HEADER SUPPORT	RIGID/SIMPLE SUPPORT	143301/143312	SUPPORT	304 S.S.	-				
RAL SUPPORT	SIMPLE SUPPORT	143312	ANCHOR	3/8" 304 S.S.					
JSER END SUPPORT	FIBERGLASS ANGLE	139070		,	1				
JSER END SUPPORI		57			DROP RIGID SUBHEADER SUPPORT PURGE U U U U U U U U U U U U U U U U U U U		- 13 ⁻ -0 ⁻		
				→ 7'−3" →	→ 7'-3" - → 7'-3" - → 7'-3" -	→ 7'-	-3" +		
				4'-6 1/2"	→ 4'-6 1/2"		READ INSTALLATION INSTRUCTIONS	PRIOR TO INST	ALLING SYSTEM
GUPPORT DIMENSIONS TELD CONFIRM PRIOR TOLERANCE: ±3" TOR MAXIMUM PIPE S REFERENCE PIPE SUP CANTILEVERED DIFFUS GHOWN ON PROJECT PIPE SUPP ATION TYPE MAX.	JLD BE PLACED AS SHOWN SHOWN FOR REFERENCE. TO DRILLING ANCHORS. SUPPORT SPACING PORT SCHEDULE. ERS ALLOWED <u>ONLY</u> AS	PRTS			GENERAL NOTES: 1. LIQUID DEPTH IS 19.36 FT. DIFFUSER DEPTH IS 18.36 FT 2. 1 OF 2 BASINS SHOWN.		NOTE: CONTRACTOR TO CONFIRM EDI INSTALLATION AND WILL <u>NOT</u> CONFLIC AND/OR STRUCTURAL COMPONENTS. PROJECT NAME TAUNTOI PROJECT DESCRIPTION AEROBIC 3 - EDI FLEXAIR® AERATIC FOR: <u>BY:</u> JMA AREAD DYNAMICS INTERNATIONAL AREAD Wastewater.com PROJECT NUMBER 38277 6 OF	F WITH OTHER P N, MA LAYOUT MA N-MIXING SY SY E: 8/17/22 3 F: +1573 S6 Colum S6 Colum	ROCESS PIPING STEM ALE: /32"=1'-0" 474 9456 474 6988 K01 Paris Road bla, M0 65202 ER 67421

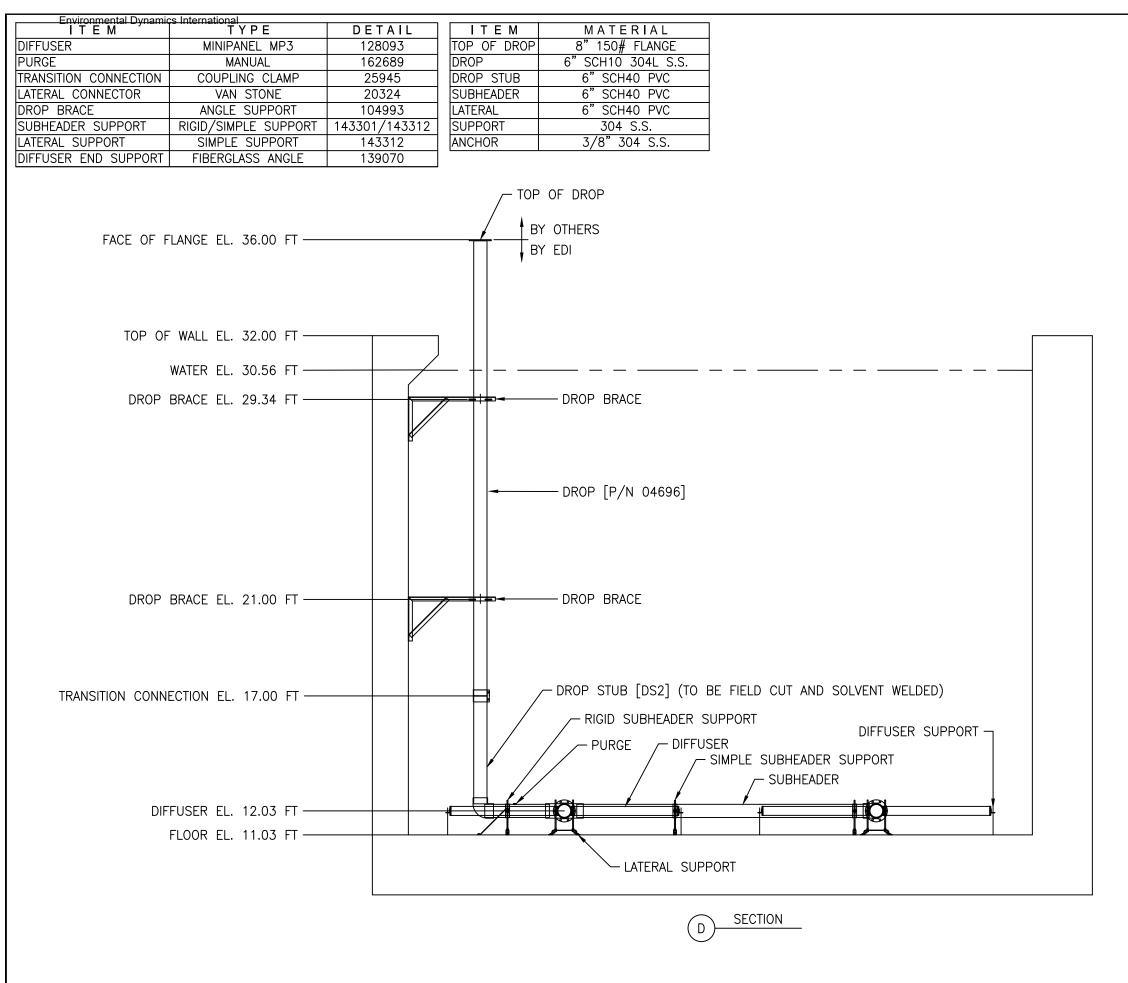
- SUPPORT 1. PIPE 2. SUP FIELI TOLE 3. FOR REFE 4. CAN SHO

P	IPE S	UPPORT SCHEDULE
LOCATION	ΤΥΡΕ	MAX. DIST. BETWEEN SUPPORTS
SUBHEADER	RIGID	PLACE NEXT TO DROP AS SHOWN STABILIZERS POINTED TOWARD DROP
SUBHEADER	SIMPLE	8'-0"
LATERAL	SIMPLE	7'-3"
Page	62	

	REVISION HISTOR	Aeration	for Life
REV	DESCRIPTION	DATE	APPROVED
D	REWORK	4/11/23	TEM
	READ INSTALLATION INSTRUCTIONS	PRIOR TO INST	ALLING SYSTEM
	NOTE: CONTRACTOR TO CONFIRM EDI	LAYOUT IS SUIT.	ABLE FOR
	NOTE: CONTRACTOR TO CONFIRM EDI INSTALLATION AND WILL <u>NOT</u> CONFLICT AND/OR STRUCTURAL COMPONENTS.	LAYOUT IS SUIT.	ABLE FOR
	NOTE: CONTRACTOR TO CONFIRM EDI INSTALLATION AND WILL <u>NOT</u> CONFLICT AND/OR STRUCTURAL COMPONENTS.	LAYOUT IS SUIT. WITH OTHER F	ABLE FOR
	NOTE: CONTRACTOR TO CONFIRM EDI INSTALLATION AND WILL <u>NOT</u> CONFLICT AND/OR STRUCTURAL COMPONENTS. PROJECT NAME TAUNTON	LAYOUT IS SUIT, WITH OTHER F	ABLE FOR
	NOTE: CONTRACTOR TO CONFIRM EDI INSTALLATION AND WILL <u>NOT</u> CONFLICT AND/OR STRUCTURAL COMPONENTS. PROJECT NAME TAUNTON PROJECT DESCRIPTION AEROBIC 3 - S	LAYOUT IS SUIT, WITH OTHER F	ABLE FOR ROCESS PIPING
	NOTE: CONTRACTOR TO CONFIRM EDI INSTALLATION AND WILL <u>NOT</u> CONFLICT AND/OR STRUCTURAL COMPONENTS. PROJECT NAME TAUNTON PROJECT DESCRIPTION AEROBIC 3 - S EDI FLEXAIR® AERATIO FOR: BY: DAT	LAYOUT IS SUIT. WITH OTHER F J, MA ECTION C	ABLE FOR PROCESS PIPING
	NOTE: CONTRACTOR TO CONFIRM EDI INSTALLATION AND WILL <u>NOT</u> CONFLICT AND/OR STRUCTURAL COMPONENTS. PROJECT NAME TAUNTON PROJECT DESCRIPTION AEROBIC 3 - S EDI FLEXAIR® AERATIO FOR: BY: DAT	LAYOUT IS SUIT. WITH OTHER F J, MA ECTION C	ABLE FOR ROCESS PIPING
	NOTE: CONTRACTOR TO CONFIRM EDI INSTALLATION AND WILL <u>NOT</u> CONFLICT AND/OR STRUCTURAL COMPONENTS. PROJECT NAME TAUNTON PROJECT DESCRIPTION AEROBIC 3 - S EDI FLEXAIR® AERATIO FOR: BY: JMA A	LAYOUT IS SUIT, WITH OTHER F I, MA ECTION C N-MIXING SY 8/17/22	ABLE FOR PROCESS PIPING
	NOTE: CONTRACTOR TO CONFIRM EDI INSTALLATION AND WILL <u>NOT</u> CONFLICT AND/OR STRUCTURAL COMPONENTS. PROJECT NAME TAUNTON PROJECT DESCRIPTION AEROBIC 3 - S EDI FLEXAIR® AERATIO FOR: BY: DAT	LAYOUT IS SUIT, WITH OTHER F J, MA ECTION C N-MIXING SY E 8/17/22	ABLE FOR PROCESS PIPING
	NOTE: CONTRACTOR TO CONFIRM EDI INSTALLATION AND WILL <u>NOT</u> CONFLICT AND/OR STRUCTURAL COMPONENTS. PROJECT NAME TAUNTON PROJECT DESCRIPTION AEROBIC 3 - S EDI FLEXAIR® AERATIO FOR: BY: JMA TEM JMA	LAYOUT IS SUIT, WITH OTHER F SECTION C N-MIXING SY E: 8/17/22 F:+1 573 54	ABLE FOR ROCESS PIPING (STEM ALE: 3474 9456 474 6988 801 Paris Road
	NOTE: CONTRACTOR TO CONFIRM EDI INSTALLATION AND WILL <u>NOT</u> CONFLICT AND/OR STRUCTURAL COMPONENTS. PROJECT NAME TAUNTON PROJECT DESCRIPTION AEROBIC 3 - S EDI FLEXAIR® AERATIO FOR: <u>EDI FLEXAIR® AERATIO</u> FOR: <u>TEM</u> STEM MA	LAYOUT IS SUIT, WITH OTHER F SECTION C N-MIXING SY 8/17/22 F:+1 573 F:+1 573 Column	ABLE FOR ROCESS PIPING STEM ALE: 3/32"=1'-0" 4474 9456 4474 6988 801 Paris Road bla, M0 65202

www.wastewat

	 6'−5 3/4"
DIFFUSER	SUPPORT LATERAL CONNECTOR 7'-0" 7'-0"
DIFFUSER	
	SUBHEADER SUPPORT
	RIGID SUBHEADER SUPPORT - tateral
	RIGID SUBHEADER SUPPORT -/ to to LATERAL
SUPPORT INSTALLATION NOTES:	<u> </u>
 PIPE SUPPORTS SHOULD BE PLACED AS SHOWN. SUPPORT DIMENSIONS SHOWN FOR REFERENCE. 	<u>◄</u> 45'-8" —
FIELD CONFIRM PRIOR TO DRILLING ANCHORS. TOLERANCE: ±3"	
 FOR MAXIMUM PIPE SUPPORT SPACING REFERENCE PIPE SUPPORT SCHEDULE. CANTILEVERED DIFFUSERS ALLOWED <u>ONLY</u> AS 	
SHOWN ON PROJECT PLAN DRAWINGS.	
LOCATION TYPE MAX. DIST. BETWEEN SUPPORTS	GENERAL NOTES: 1. LIQUID DEPTH IS 19.36 FT.
SUBHEADER SIMPLE 8'-0"	DIFFUSER DEPTH IS 18.36 FT. 2. 1 OF 2 BASINS SHOWN.
LATERAL SIMPLE 7'-3"	

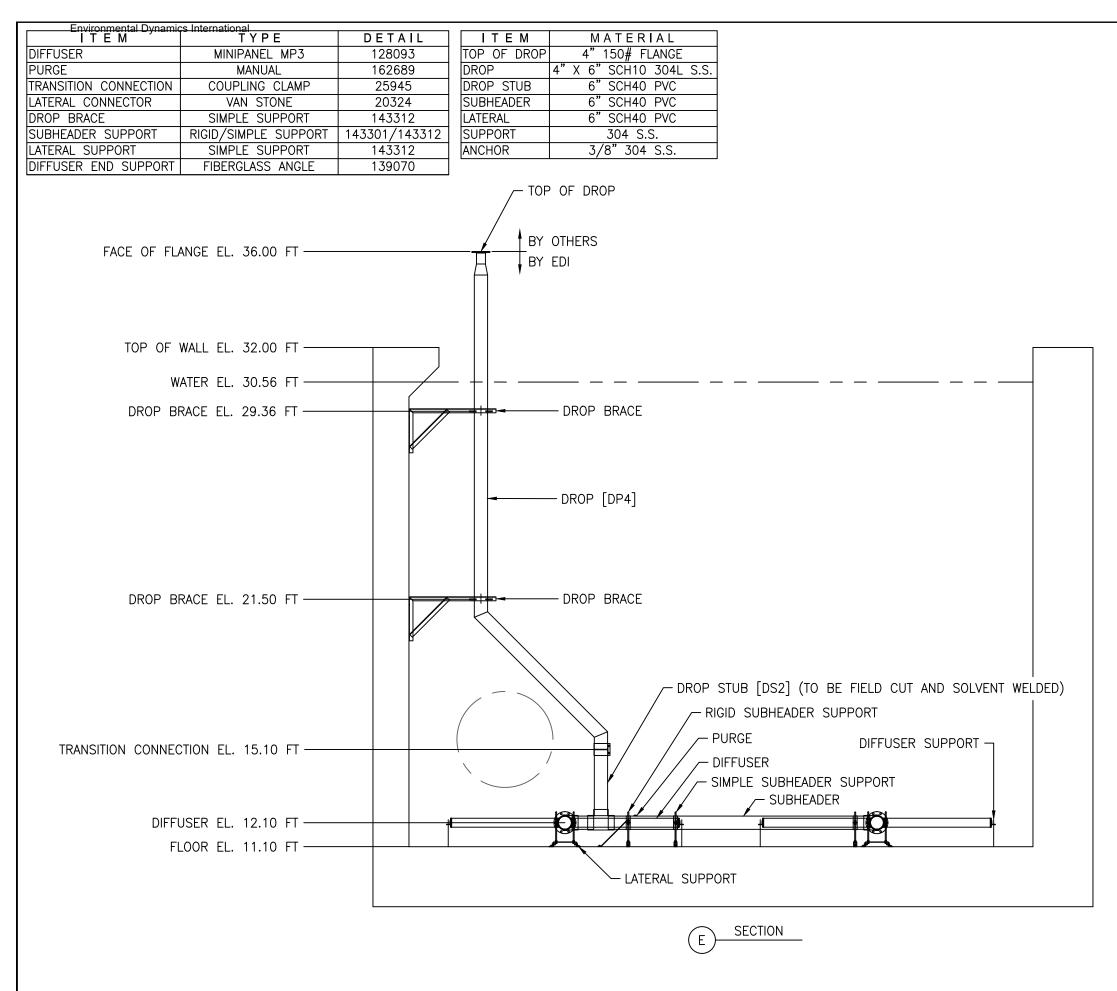

Environmental Dynamic	s International			
ITEM	ТҮРЕ	DETAIL	ITEM	
DIFFUSER	MINIPANEL MP3	128093	TOP OF DROP	
PURGE	MANUAL	162689	DROP	
TRANSITION CONNECTION	COUPLING CLAMP	25945	DROP STUB	
LATERAL CONNECTOR	VAN STONE	20324	SUBHEADER	
DROP BRACE	SIMPLE SUPPORT	104993	LATERAL	
SUBHEADER SUPPORT	RIGID/SIMPLE SUPPORT	143301/143312	SUPPORT	
LATERAL SUPPORT	SIMPLE SUPPORT	143312	ANCHOR	
DIFFUSER END SUPPORT	FIBERGLASS ANGLE	139070		

ITEM	MATERIAL]	# OF
TOP OF DROP	8" 150# FLANGE	1	DIFFUSERS
DROP	6" SCH10 304L S.S.	TOTAL	76
DROP STUB	6" SCH40 PVC		
SUBHEADER	6" SCH40 PVC		
LATERAL	6" SCH40 PVC		
SUPPORT	304 S.S.		
ANCHOR	3/8" 304 S.S.		
		-	

REV D

	PROVED TEM
REWORK 4/11/23	TEM
READ INSTALLATION INSTRUCTIONS PRIOR TO INSTALLING NOTE: CONTRACTOR TO CONFIRM EDI LAYOUT IS SUITABLE F INSTALLATION AND WILL <u>NOT</u> CONFLICT WITH OTHER PROCES AND/OR STRUCTURAL COMPONENTS.	FOR
NOTE: CONTRACTOR TO CONFIRM EDI LAYOUT IS SUITABLE F	FOR
NOTE: CONTRACTOR TO CONFIRM EDI LAYOUT IS SUITABLE F INSTALLATION AND WILL <u>NOT</u> CONFLICT WITH OTHER PROCES AND/OR STRUCTURAL COMPONENTS. PROJECT NAME TAUNTON, MA PROJECT DESCRIPTION AEROBIC SWING 1 - LAYOUT EDI FLEXAIR® AERATION-MIXING SYSTEM FOR: BY: DATE: NOTE:	FOR SS PIPING
NOTE: CONTRACTOR TO CONFIRM EDI LAYOUT IS SUITABLE F INSTALLATION AND WILL <u>NOT</u> CONFLICT WITH OTHER PROCES AND/OR STRUCTURAL COMPONENTS. PROJECT NAME TAUNTON, MA PROJECT DESCRIPTION AEROBIC SWING 1 - LAYOUT EDI FLEXAIR® AERATION-MIXING SYSTEM FOR: BY: DATE: NOTE:	FOR SS PIPING
NOTE: CONTRACTOR TO CONFIRM EDI LAYOUT IS SUITABLE F INSTALLATION AND WILL <u>NOT</u> CONFLICT WITH OTHER PROCES AND/OR STRUCTURAL COMPONENTS. PROJECT NAME TAUNTON, MA PROJECT DESCRIPTION AEROBIC SWING 1 - LAYOUT EDI FLEXAIR® AERATION-MIXING SYSTEM FOR: BY: JMA DATE: SCALE: TEM JMA 8/17/22 1/8"= Environmental ATE: SCALE: P: +1 573 474 6 5601 Paris	FOR SS PIPING 1 =1'-0" 5988 5988 5988
NOTE: CONTRACTOR TO CONFIRM EDI LAYOUT IS SUITABLE F INSTALLATION AND WILL <u>NOT</u> CONFLICT WITH OTHER PROCES AND/OR STRUCTURAL COMPONENTS. PROJECT NAME TAUNTON, MA PROJECT DESCRIPTION AEROBIC SWING 1 - LAYOUT EDI FLEXAIR® AERATION-MIXING SYSTEM FOR: BY: JMA PATE: SCALE: TEM JMA PATE: SCALE: TEM JMA PATE: SCALE: TEM P: 1573 474 9 F:+1 573 474 9	FOR SS PIPING 1 =1'-0" 5988 s Road

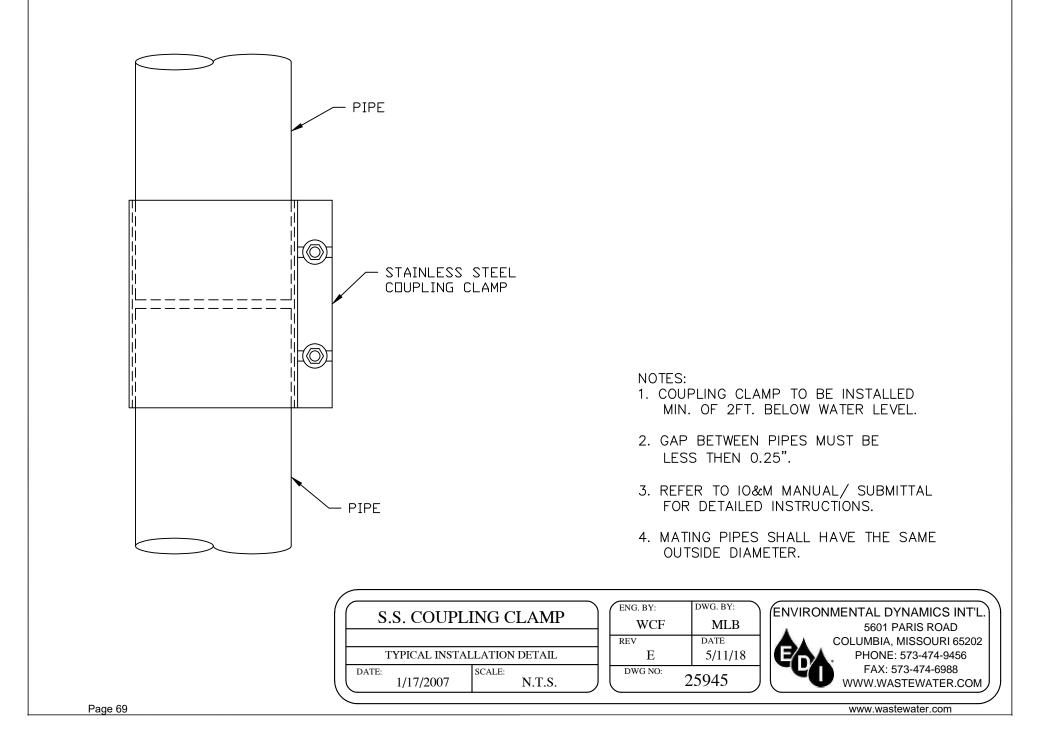
www.wastewater.com

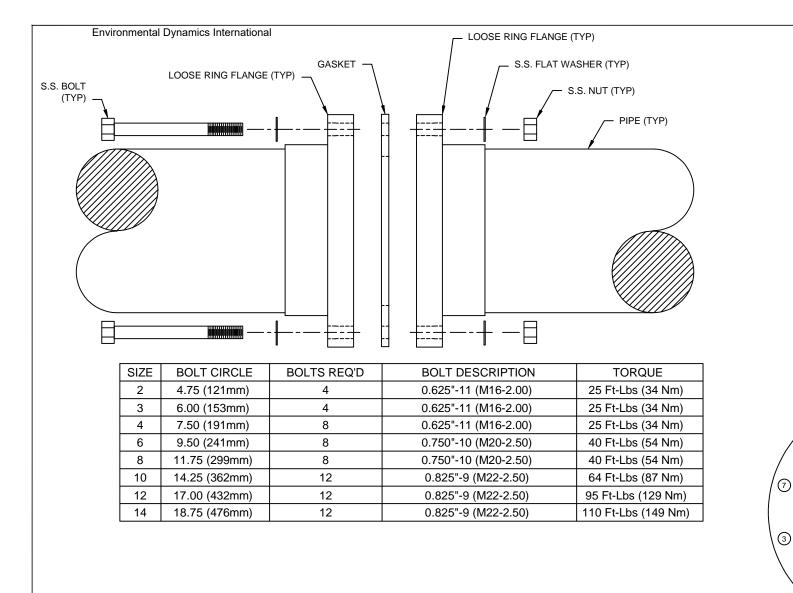

	Aeration for Life REVISION HISTORY						
REV	DESCRIPTION DATE APPROVED						
D	REWORK		4/11/23	TEM			
	READ INSTALLATION INS						
	NOTE: CONTRACTOR TO C						
	AND/OR STRUCTURAL CO						
	PROJECT NAME		N/ A	$ \longrightarrow $			
	TAUNTON, MA						
		SWING 1					
	EDI FLEXAIR		6	ALE			
		MA 👸	/17/22	1/4"=1'-0"			
		nmental		474 9456 474 6988			
		A Nexon BRAD		501 Paris Road			
	Wastewater.com	SHEET NUMBER	-	bla, MO 65202			
	38277	9 OF 11	. Dwg Nume . 1	67421)			

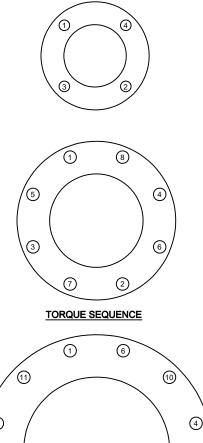
www.wastewate

DIFFUSERMINIPANEL MP3128093TOP OF DROP4" 150# FLANGEDIFFPURGEMANUAL162689DROP4" X 6" SCH10 304L S.S.TOTAL	# OF FUSERS	REVISION HISTORY	
PURGE MANUAL 162689 DROP 4" X 6" SCH10 304L S.S. TOTAL			
	51	DESCRIPTION DATE	APPROVED
TRANSITION CONNECTION COUPLING CLAMP 25945 DROP STUB 6" SCH40 PVC	D	REWORK 4/11/23	TEM
LATERAL CONNECTOR VAN STONE 20324 SUBHEADER 6" SCH40 PVC			
DROP BRACE SIMPLE SUPPORT 143312 LATERAL 6" SCH40 PVC			
SUBHEADER SUPPORT RIGID/SIMPLE SUPPORT 143301/143312 SUPPORT 304 S.S.			
LATERAL SUPPORT SIMPLE SUPPORT 143312 ANCHOR 3/8" 304 S.S.			
DFFUSER END SUPPORT FIBERGLASS ANGLE 139070	DIFFUSER SUPPORT DIFFUSER		
		READ INSTALLATION INSTRUCTIONS PRIOR TO INS NOTE: CONTRACTOR TO CONFIRM EDI LAYOUT IS SUI INSTALLATION AND WILL <u>NOT</u> CONFLICT WITH OTHER AND/OR STRUCTURAL COMPONENTS.	ITABLE FOR
LATERAL CONNECTOR - LATERAL - 1'-3 7/8"	- 1'-3 7/8"	PROJECT NAME	
SUPPORT INSTALLATION NUTES:	/ .	TAUNTON, MA	
 PIPE SUPPORTS SHOULD BE PLACED AS SHOWN. SUPPORT DIMENSIONS SHOWN FOR REFERENCE. 		PROJECT DESCRIPTION	
FIELD CONFIRM PRIOR TO DRILLING ANCHORS.		AEROBIC SWING 2 - LAYO	UT
TOLERANCE: ±3"		EDI FLEXAIR® AERATION-MIXING S	SYSTEM
3. FOR MAXIMUM PIPE SUPPORT SPACING		FOR' BY' DATE'	SCALE:
REFERENCE PIPE SUPPORT SCHEDULE.		TEM JMA 8/17/22	1/8"=1'-0"
4. CANTILEVERED DIFFUSERS ALLOWED <u>ONLY</u> AS			
SHOWN ON PROJECT PLAN DRAWINGS.		P:+157	73 474 9456
PIPE SUPPORT SCHEDULE		DYNAMICS INTERNATIONAL F: +1 57	73 474 6988
LOCATION TYPE MAX. DIST. BETWEEN SUPPORTS	GENERAL NOTES: 1. LIQUID DEPTH IS 19.36 FT.	A Nexton BRND	5601 Paris Road
	DIFFUSER DEPTH IS 19.36 FT.		imbla, MO 65202
SUBHEADER RIGID PLACE NEXT TO DROP AS SHOWN STABILIZERS POINTED TOWARD DROP		PROJECT NUMBER SHEET NUMBER DWG NUM	MBER
SUBHEADER SIMPLE 8'-0" LATERAL SIMPLE 7'-3"	2. 1 OF 2 BASINS SHOWN.		167421
LATERAL		· · · · · · · · · · · · · · · · · · ·	· /

Environmental Dynamic	<u>is international</u>			
ITEM	ТҮРЕ	DETAIL	ITEM	
DIFFUSER	MINIPANEL MP3	128093	TOP OF DROP	
PURGE	MANUAL	162689	DROP	4
TRANSITION CONNECTION	COUPLING CLAMP	25945	DROP STUB	
LATERAL CONNECTOR	VAN STONE	20324	SUBHEADER	
DROP BRACE	SIMPLE SUPPORT	143312	LATERAL	
SUBHEADER SUPPORT	RIGID/SIMPLE SUPPORT	143301/143312	SUPPORT	
LATERAL SUPPORT	SIMPLE SUPPORT	143312	ANCHOR	
DIFFUSER END SUPPORT	FIBERGLASS ANGLE	139070		


	MATERIAL	
ITEM		
TOP OF DROP	4" 150# FLANGE	
DROP	4" X 6" SCH10 304L S.S.	TOTAL
DROP STUB	6" SCH40 PVC	
SUBHEADER	6" SCH40 PVC	
LATERAL	6" SCH40 PVC	
SUPPORT	304 S.S.	
ANCHOR	3/8" 304 S.S.	



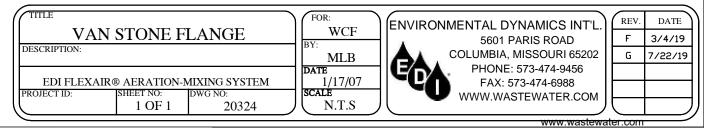

	Aeration for Life REVISION HISTORY						
REV							
D	REWORK		4/11/23	TEM			
·							
	READ INSTALLATION INST						
	NOTE: CONTRACTOR TO C INSTALLATION AND WILL N	OT CONFLICT					
	AND/OR STRUCTURAL CO	MPUNENTS.					
		FAUNTON,	MA	J			
	PROJECT DESCRIPTION						
		SWING 2					
		DATE:	6	ALF.			
	TEM JI	MA 8,	/17/22	1/4"=1'-0"			
		nmontal	P: +1 573	474 9456			
			F: +1 573	474 6988			
	wastewater.com	a nicatan 2640		601 Paris Road Ibla, MO 65202			
	PROJECT NUMBER	SHEET NUMBER					
	38277	11 OF 1	1 1	67421			

www.wastewate

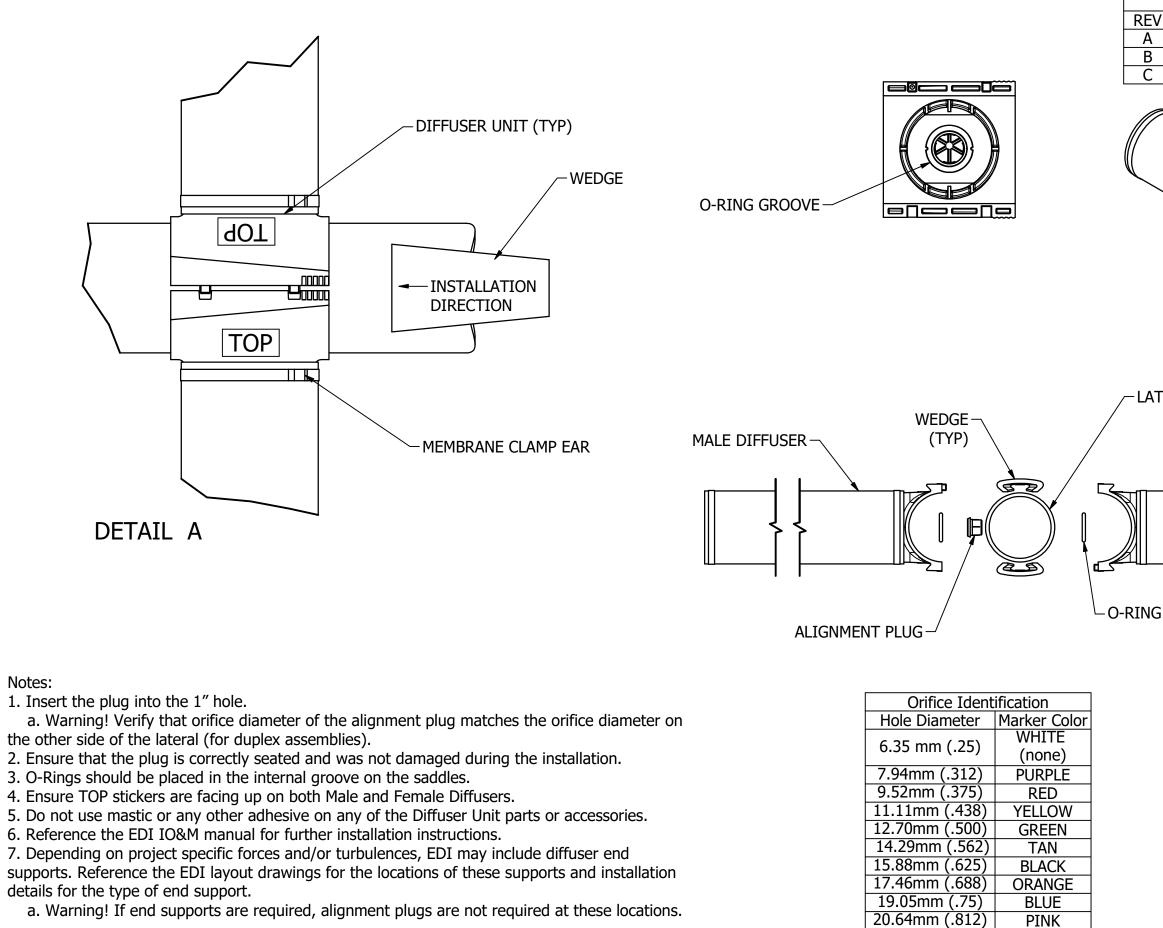
This page intentionally left blank

(9)

(5)


8

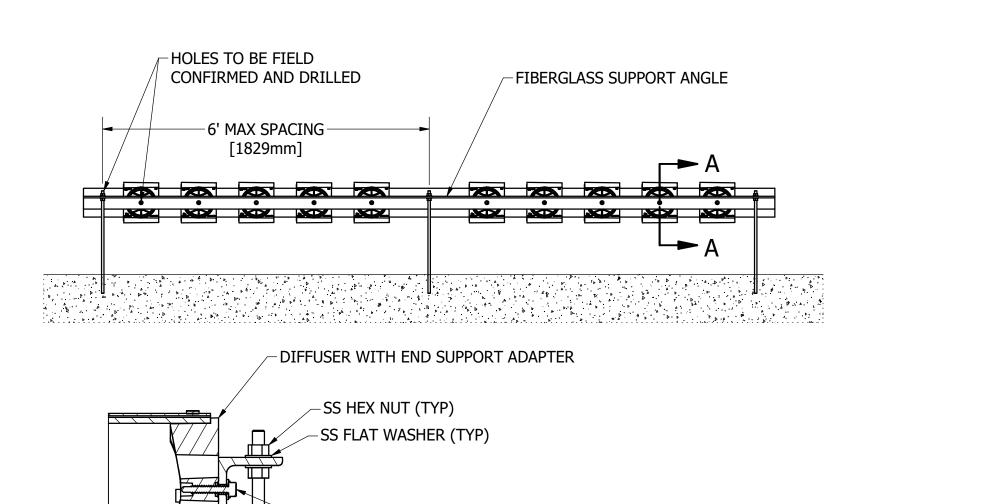
(12)


(2)

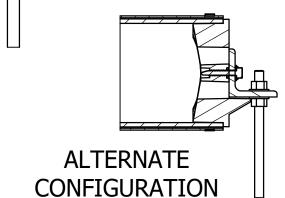
Aeration for Life

- NOTES:
- USE ANTI-SEIZE ON ALL STAINLESS STEEL 1. FASTENERS.
- BOLT THREADS SHOULD BE WELL LUBRICATED. 2.
- NUT AND BOLT THREADS SHOULD BE FREE RUNNING 3. DURING ASSEMBLY.
- 4. FOLLOW ILLUSTRATED BOLT TIGHTENING SEQUENCE.

Page 70



4


₽

Aeration for Life

					-
		I HISTORY		1	
V	DESCRIPTION		ATE	APPROVED	-
	INITIAL RELEASE New Alignment Plug	5/27/2 6/6/20		JS	-
	Change Drawing Title	e 7/12/2	2017	RKH AAR	•
	Change Drawing The		2017		-
				δ	
TE	RAL PIPE				
G (TYP)	DIFFUSER			4
	PROJECT NAME C/L SDM S	addle Inst	allation	Detail	
	PROJECT DESCRIPTION	ex Diffuse			
	EDI FLEXAIR®			-	
	FOR: BY:	DATE:	27/2016	SCALE:	
				ternational	
	P: +1 5 F: +1 5	73.474.9456 73.474.6988 water.com	Worldw	ide Headquarters: 5601 Paris Road a, MO USA 65202	
	PROJECT NUMBER	SHEET NUMBER	. Dwg n 12	28093.idw	
					J

Ø1/4" SS SELF-TAPPING SCREW AND WASHER

Required Bolt/Nut Torque Values				
Bolt Sizes Torque				
3/8 in (9.5 mm)	20 ft-lb (27 N-m)			
1/2 in (13 mm)	45 ft-lb (61 N-m)			
5/8 in (16 mm)	90 ft-lb (122 N-m)			

SECTION A-A

NOTES:

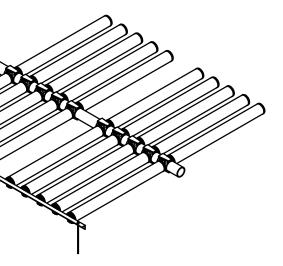
HOLES TO BE FIELD DRILLED TO INSTALL ALL THREAD AND RELATED HARDWARE.

APPLY COMMERCIAL GRADE ANTI-SEIZE LUBRICANT TO ALL STAINLESS STEEL FASTENERS.

TORQUE NUTS TO SPECIFIED TORQUE.

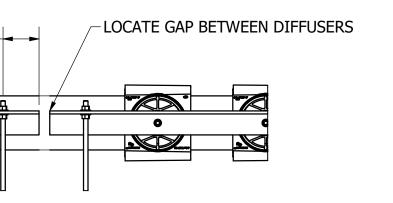
4

 $\mathbf{4}$


FIBERGLASS SUPPLIED COMPLIES WITH STANDARD ASTM-D570 TO ALLOW FIELD DRILLING WITHOUT SEALING OF EXPOSED EDGES.

₽

Aeration for Life


₩

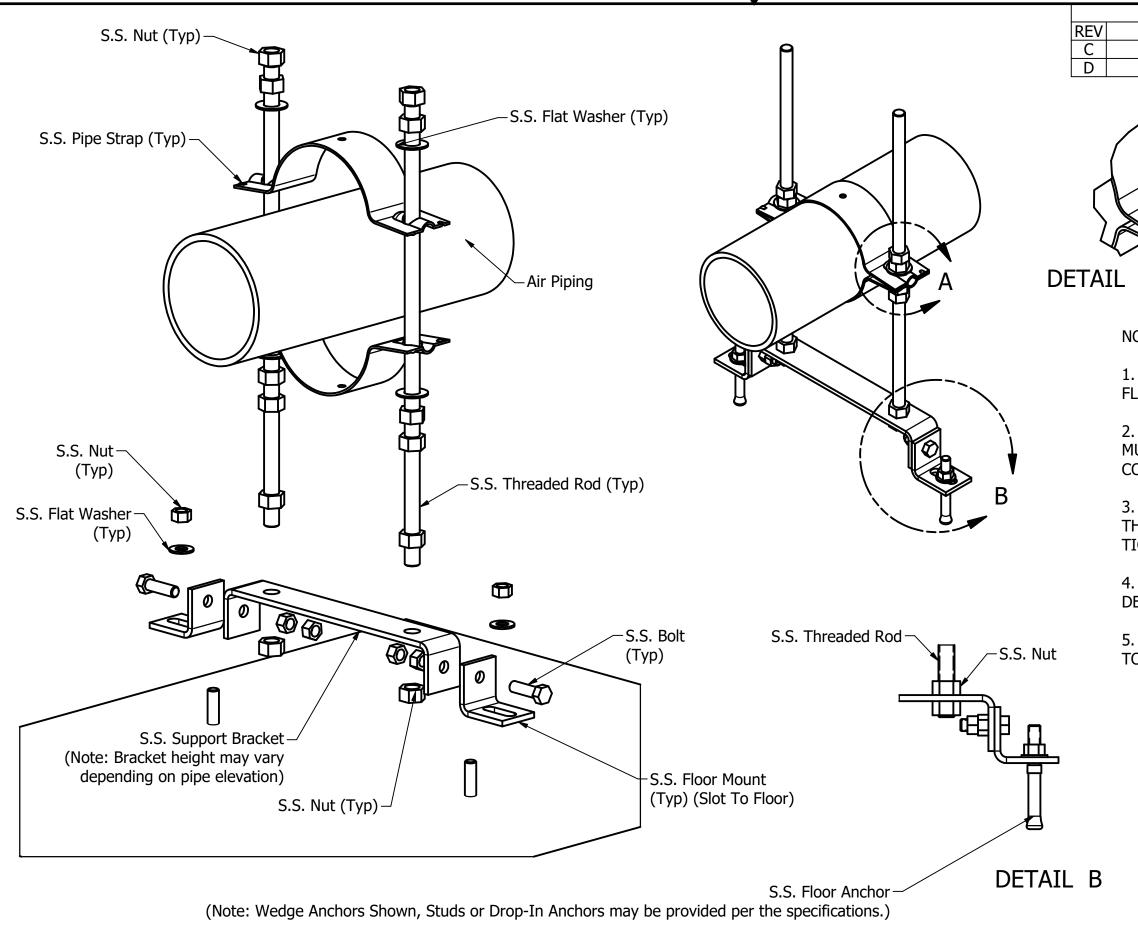
	REVISION HISTORY					
REV	DESCRIPTION	DATE	APPROVED			
Α	INITIAL RELEASE	9/23/2016	RKH			
В	ADD ALTERNATE CONFIGURATION	8/26/2019	JS			

1' MAX (305mm)

0

FIBERGLASS ANGLE END DETAIL

PROJECT NAME							
	PROJECT DESCRIPTION Diffuser End Support - FG Angle						
	EDI FLEXAIR® AERATION-MIXING SYSTEM						
FOR:	rhulsebus 9/23/2016 N.T.S.						
Envi	Environmental Dynamics International						
P: +1 573.474.9456 F: +1 573.474.6988 5601 Paris Road							
	wastewater.com Columbia, MO USA 65202						
PROJECT NUMBER	1 OF 1 139070.idw						


www.wastewater.com

4

Aeration for Life

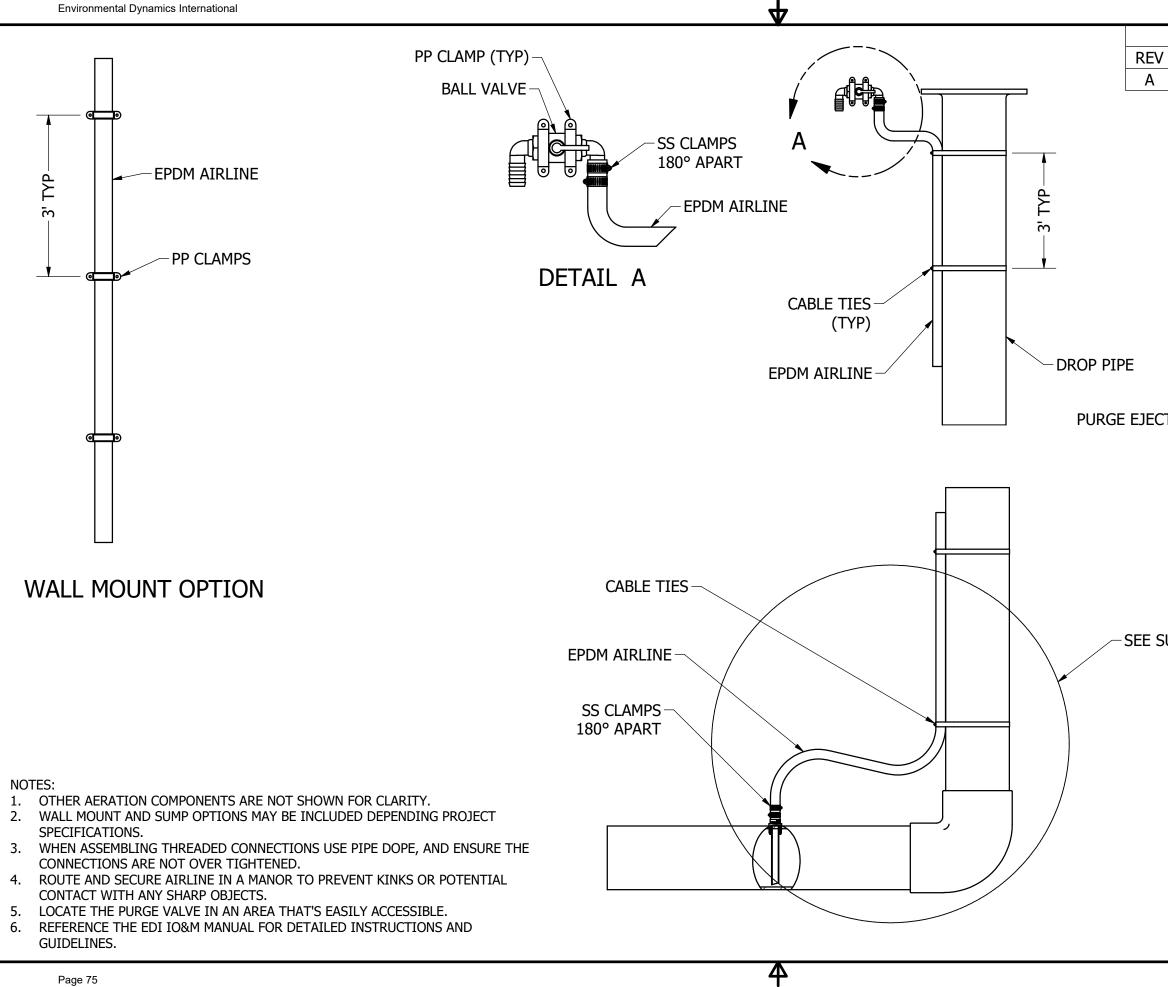
Aeration for Life						
	REVI	SION HIS	FORY			1
	DESCRIPTI	ON	DA	TE	APPROVED	
REM	10VE LOCK V	VASHER		2018	JS	
A	ADD CRUSH N	NOTE	5/6/	2021	JS	
Nut (Гур)	~				
Stabilize	er — X		\backslash			
ner (Typ		YA	\sim			
(T)			\sim			
(Тур)-			\geq			
			\backslash			
DE	ETAIL A				CRUSH	
		J	TH	IE STR	RAPS	
DTES:						
FLOOR	R MOUNTS AF	RE SECURE	D TO T	he ba	SIN	
OOR BY	(EMBEDDED	CONCRET	E ANCH	OR BC	DLTS.	
	IMERCIAL GR		-	-	-	
UST BE	USED ON AL	LSIAINLE	55 51 EI		KEADED	
JININECT	10115.					
TIGHTEN THE NUTS DIRECTLY ABOVE AND BELOW						
HE STRAPS UNTIL THE EARS TOUCH. OVER						
GHTENING WILL DAMAGE THE STRAPS.						
REFER	TO EQUIPM	ENT SUPPL	Y LIST	ТО		
ETERMINE PROVIDER OF ANCHOR HARDWARE.						
	ENCE EDI IO		al for	MORE		
TAILED) INSTRUCTI	ONS.				
[PROJECT NAME Riai	id Pipe Sup	port In	stallati	on	
	PROJECT DESCRIPTION	N				
		", 9" & 15" T				
	FOR:	XAIR® AERA	TION-MI		YSTEM CALE:	
	RKH	MLB	7/14/			
	Envi	ironmental	Dynam	ics Inte	ernational	
		P: +1 573.474.9	456 I V	Norldwide	Headquarters:	1
	~ "('A	F: +1 573.474.6	988	5	601 Paris Road	1
В		wastewater.co	I	-	MO USA 65202	
	PROJECT NUMBER		OF 1	^{DWG NUMI}	301.idw	1
)	

4

₽

	Aeration fo	or Life				
REVISION HISTORY						
DESCRIPTION DATE APPROVEI						
REMOVE LOCK WASHER	2/13/2020	JS				
ADD CRUSH NOTE	5/6/2021	JS				
A	RUSH THE S	TRAPS				
OTES:						
. FLOOR MOUNTS ARE SECURED		SIN				

2. A COMMERCIAL GRADE ANTI SEIZE LUBRICANT MUST BE USED ON ALL STAINLESS STEEL THREADED CONNECTIONS.


3. TIGHTEN THE NUTS DIRECTLY ABOVE AND BELOW THE STRAPS UNTIL THE EARS TOUCH. OVER TIGHTENING WILL DAMAGE THE STRAPS.

4. REFER TO EQUIPMENT SUPPLY LIST TO DETERMINE PROVIDER OF ANCHOR HARDWARE.

5. SEE INSTALLATION INSTRUCTIONS FOR PROPER TORQUE VALUES.

PROJECT NAME Simple Pipe Support Installation						
For 2", 9" & 15" Tall Support Brackets						
EDI FLEXAIR® AERATION-MIXING SYSTEM						
RKH MLB 7/14/2017						
Environmental Dynamics International						
P: +1 573.474.9456 Worldwide Headquarters: F: +1 573.474.6988 5601 Paris Road wastewater.com Columbia, MO USA 65202						
PROJECT NUMBER SHEET NUMBER 1 OF 1 143312.idw						

₩

₽

Aeration for Life

REVISION HISTORY					
/	DESCRIPTION	DATE		APPROVE	D
	INITIAL RELEASE	3/1/2023	1		
TOR SUMP SUMP OPTION					
PROJECT NAME					
PROJECT DESCRIPTION Manual Purge EPDM Line					-
Typical Installation Detail					-
For: BY: DATE: Scale: areinhart 3/1/2021 N.T.S.					ノ
Environmental DYNAMICS INTERNATIONAL A Nexorr BRAND F: +1 573 474 9456 F: +1 573 474 6988 5601 Paris Road					
wastewater.com Columbia, MO 65202 PROJECT NUMBER SHEET NUMBER					신
		1 OF 1		2689.idw	ノ

This page intentionally left blank

Appendix: Field Service Reports and Training